ELECTRONIC SUPPLEMENTARY INFORMATION (ESI)

to

Hexanuclear {Zn^{II}₄Fe^{III}₂} and {Zn^{II}₄Cr^{III}₂} complexes from the use of potentially tetradentate NOO'O'' Schiff-base Ligands ⁺

Konstantinos N. Pantelis ^a, Sotiris G. Skiadas ^a, Zoi G. Lada ^b, Rodolphe Clérac ^c, Yiannis Sanakis ^{*d},

Pierre Dechambenoit *c, and Spyros P. Perlepes *a,b

^a Department of Chemistry, University of Patras, Patras 26504, Greece, E-mail: <u>perlepes@upatras.gr</u>

^b Institute of Chemical Engineering Sciences (ICE-HT), Foundation for Research and Technology-Hellas (FORTH), Platani, P.O. Box 144, Patras 26504, Greece

^c Univ. Bordeaux, CNRS, CRPP, UMR 5031, F-33600 Pessac, France, E-mail: <u>pierre.dechambenoit@u-bordeaux.fr</u>

^d Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", Aghia Paraskevi Attikis 15310, Greece, Email: <u>i.sanakis@inn.demokritos.gr</u>

[†]Dedicated to Professor Mark Turnbull on the occasion of his retirement; a great inorganic chemist and magnetochemist, a precious friend.

Table S1 Crystallographic data for complexes $[Zn_4Fe_2(saphCOO)_6(NO_3)_2(EtOH)_2]$ 4CH2Cl2 2EtOH $(1 4CH_2Cl_2 2EtOH)$, $[Zn_4Cr_2(saphCOO)_6(NO_3)_2(H_2O)_2]$ 4MeCN 2EtOH(2 4MeCN 2EtOH) and $[Zn_4Fe_2(4ClsaphCOO)_6(NO_3)_2(EtOH)_2]$ 4CH2Cl2 2EtOH ($3 4CH_2Cl_2 2EtOH$)(2 4MeCN 2EtOH)

Compound	1.4CH ₂ Cl ₂ .2EtOH	3·4CH ₂ Cl ₂ ·2EtOH	2·4MeCN·2EtOH
	$C_{88}H_{66}Fe_2N_8O_{26}Zn_4\cdot$	C ₈₈ H ₆₀ Cl ₆ Fe ₂ N ₈ O ₂₆ Zn ₄ ·	$C_{84}H_{58}Cr_2N_8O_{26}Zn_4$,
Formula	$4(CH_2Cl_2), \cdot 2(C_2H_6O)$	$4(CH_2Cl_2)\cdot 2(C_2H_6O)$	$2(C_2H_6O) \cdot 4(C_2H_3N)$
FW (g·mol ^{−1})	2456.50	2663.16	2217.21
Crystal color	brown	brown	red
Crystal size (mm)	0.24 x 0.17 x 0.10	0.09 x 0.07 x 0.02	0.11 x 0.05 x 0.03
Crystal system	monoclinic	triclinic	triclinic
Space group	P21/c	P-1	P-1
Temperature	120 K	120 K	120 K
a (Å)	12.175(3)	12.2993(11)	12.3043(5)
b (Å)	27.856(7)	15.6707(13)	14.2093(6)
<i>c</i> (Å)	16.416(3)	15.6934(13)	15.7458(7)
α (°)	90	67.497(3)	109.169(2)
в (°)	113.189(15)	72.688(3)	90.594(2)
y (°)	90	83.591(3)	113.395(2)
<i>V</i> (ų)	5118(2)	2667.8(4)	2354.85(18)
Z	2	1	1
d _{calc}	1.594	1.658	1.563
μ(mm⁻¹)	1.488	1.579	1.312
θ_{min} - θ_{max}	1.462 ° - 23.565°	1.734° - 21.529°	1.828° - 25.091°
Refl. coll. / unique	61656 / 7381	55061 / 6132	87772 / 8353
Completeness to 20	0.967	0.996	0.997
R _{int}	0.1004	0.0938	0.1684
Refined param./restr.	660 / 12	681 / 18	650 / 2
${}^{a}R_{1}(l > 2\sigma(l))$	0.0791	0.0423	0.0326
^b wR ₂ (all data)	0.2076	0.1099	0.0866
Goodness of fit	1.181	1.056	1.009
CCDC number	2316071	2316072	2316073

^b $wR_2 = {\Sigma[w(F_0^2 - F_c^2)^2] / \Sigma[w(F_0^2)^2]}^{1/2}$

Fig. S1 Partially labeled plot of the molecule $[Zn_4Fe_2(4ClsaphCOO)_6(NO_3)_2(EtOH)_2]$ that is present in the crystal structure of $3.4CH_2Cl_2.2EtOH$. The dashed lines indicate a weakly bonding interaction, i.e. semicoordination. Symmetry operation used to generate equivalent atoms: (') – x + 1, -y + 1, -z + 2.

Fig. S2 The coordination modes (using Harris notation) of the $4ClsaphCOO^{2-}$ ligands in complex $3\cdot4CH_2Cl_2\cdot2EtOH$; four ligands adopt the 2.1111 ligation mode and two the 3.2111 one.

Fig. S3 The coordination modes (using Harris notation) of the saphCOO²⁻ ligands in complex 2.4MeCN·2EtOH; four ligands adopt the 2.1111 ligation mode and two the 3.2111 one.

Fig. S4 Stick representations of 1.4CH₂Cl₂·2EtOH (left) and 3.4CH₂Cl₂·2EtOH (right) in the (bc) plane, showing the packing of the complexes separated by lattice CH₂Cl₂ molecules (depicted in ball and stick representation). H atoms are omitted for clarity. Intermolecular H bonds are illustrated with dashed green lines. C, grey; H, white; N, blue; O, red; Cl, light green; Fe, orange; Zn, light blue.

Fig. S5 Stick representations of 1.4CH₂Cl₂·2EtOH (left) and 3.4CH₂Cl₂·2EtOH (right) in the (ab) plane, showing the packing of the complexes separated by lattice CH₂Cl₂ molecules (depicted in ball and stick representation). H atoms and lattice EtOH molecules are omitted for clarity. Intermolecular H bonds are illustrated with dashed green lines. C, grey; H, white; N, blue; O, red; Cl, light green; Fe, orange; Zn, light blue.

Fig. S6 ORTEP-type view of complex **2**·4MeCN·2EtOH and the H-bonded EtOH molecules in the crystal at 120 K. Thermal ellipsoids are depicted at a 50% probability level. Lattice MeCN molecules and H atoms are omitted for clarity, except those involved in H-bonding. H bonds are depicted in dashed green lines. C, grey; H, white; N, blue; O, red; Cr, purple; Zn, light blue.

Fig. S7 Space-filling diagram of 1.

Fig. S8 Space-filling diagram of 3.

Fig. S9 The Raman spectrum of a dried sample of 1 in the 2300-200 cm⁻¹ region.

Fig. S10 The Raman spectrum of a dried sample of 3 in the 2300-200 cm⁻¹ region.

Fig. S11 The IR spectrum (KBr, cm⁻¹) of a dried sample of 3.

Fig. S12 The IR spectrum (KBr, cm⁻¹) of a dried sample of 2.

Fig. S13 The UV/Vis spectrum of a dried sample of **3** in CH_2Cl_2 . The 340 nm peak is a ghost peak due to the instrument used.

Fig. S14 Mössbauer spectra of powdered samples of complex 1 recorded at 300 and 80 K in zero applied field.

Fig. S15 Temperature dependence of the χT product (where χ is the molar magnetic susceptibility that equals M/H per complex, and T the temperature) collected in an applied dc magnetic field (H) of 0.1 T for **3**·4CH₂Cl₂·2EtOH. The solid red line is the best fit of the experimental data to an Heisenberg $S_{\text{Fe}} = 5/2$ spin dimer model as discussed in the text (with $H = -2J(S_{\text{Fe1}} \bullet S_{\text{Fe2}})$: $J/k_{\text{B}} = -0.06(1)$ K and g = 2.04(5)).

Fig. S16 Field dependence of the magnetization (*M*) for 3.4CH₂Cl₂·2EtOH below 8 K (*M*(1.87 K, 7 T) = 10.2 μ_B implying *g* = 2.04).

Fig. S17 Field dependence of the magnetization (*M*) for **2**·4MeCN.2EtOH below 8 K (*M*(1.85 K, 7 T) = 6.6 μ_B implying *g* = 2.20).

Figure S18 Field dependence of the magnetization (*M*) for 1.4CH₂Cl₂·2EtOH below 8 K (*M*(1.85 K, 7 T) = 11.0 μ_B implying *g* = 2.10).