Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supplementary Information

Copper Sulfide-Incorporated Layered Porous Sulfur-Doped Graphitic

Carbon Nitride Nanosheets for an Efficient Catalytic

Reduction of 4-Nitrophenol

Mallappa Mahanthappa^{1‡}, Subramaniyan Ramasundaram^{2‡}, K. Upendranath³,

Mohd Fahad⁴, Lavanya Gunamalai⁵, Osamah Alduhaish⁶, Mani D⁷, Tae Hwan Oh^{2†},

Vishwanath R S^{3†}

¹Department of Chemistry, School of Applied Sciences, REVA University, Bengaluru - 5600 64, India.

²School of Chemical Engineering, Yeungnam University, Gyeongsan 38436, Republic of Korea.

³Centre for Research in Functional Materials (CRFM), JAIN (Deemed-to-be University),

Jain Global Campus, Bengaluru 562112, Karnataka, India.

⁴Functional Ceramics Laboratory, Indian Institute of Technology (Indian School of Mines),

Dhanbad 826004, Jharkhand, India.

⁵Institute of Molecular Medicine, University of Texas Health Science Centre, Houston,

Texas-77030, USA.

⁶Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.

⁷Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai- 602105, Tamil Nadu, India.

[‡]Authors contributed equally

[†]Corresponding authors:

Dr. Vishwanath R S, E-mail: rs.vishwanath234@gmail.com

Dr. Tae Hwan Oh, E-mail: taehwanoh@ynu.ac.kr

Figure S1. Tauc's plot of $(\alpha hv)^2 vs$. Band gap energy of s-g-C₃N₄ (Black line) and CuS/ s-g-C₃N₄ (Red line) samples.

Figure S2. SEM micrographs of (A) s-g- C_3N_4 and (B) CuS/s-g- C_3N_4 samples.

Figure S3. HR-TEM image of the CuS/ S-g-C₃N₄ composite used for the determination of d-spacing CuS (A) and s-g-C₃N₄ (B).

SI No	Substrate	Abbreviations	Reduction rate (%)	Time (min)
1	OH NO ₂ CH ₃	4-methyl-2- nitrophenol	99.3	3
2	NH ₂ NO ₂	2-nitroamine 98.7		6
3	OH NO ₂	2-nitrophenol	99.3	2
4	NH ₂ NO ₂	3-nitroamine	99.5	3
5	NH ₂ NO ₂ NO ₂	2,4-Dinitroamine	89.3	3
6	NO ₂ NH ₂ NH ₂	4-nitrodiamine	98.6	2
7	NO ₂ NH ₂	4-nitroamine	98.8	6

Table S1. The catalytic reduction of various nitro scaffolds using CuS/s-g-C₃N₄.

Table S2. Comparison of the apparent rate constant of 4-NP reduction with variouscatalysts using the Langmuir-Hinshelwood equation.

Catalysts	4-NP	NaBH ₄	k	Time	References
			(min⁻¹)	(min)	
PANI/ZnO/MnO ₂	0.2 mM	0.1 M	219	10	1
CuO nanoparticles	0.36	30	0.022	15	2
GO/Au	0.1 mM	0.1 M	-	2100	3
TiO2/rGO NCs	10 mg/L of 4-NP	-	0.0216	32	4
	+ H ₂ O ₂ (1 Mm)				
PANI Nanofibers	0.2 mM	0.002 M	48.8	40	5
Ca ²⁺⁻ doped AgInS ₂	15 mg/L	-	-	120	6
Ag ₃ PO ₄ /g-C ₃ N ₄	30 mg/L	20mM	0.01277	5	7
ZnO/Ag ₂ O	1.0 mM	0.01 M	229.65	21	8
Bi ₂ O ₃	0.5 mM	0.2 M	91.42	50	9
CuS/s-g-C ₃ N ₄	20 mg L ^{−1}	0.1 M	2.357	3	Present work

References

- P. L. Meena, L. K. Chhachhia and A. K. Surela, *Journal of Molecular Structure*, 2024, 1303, 137575.
- 2. A. Bhattacharjee and M. Ahmaruzzaman, *Materials Letters*, 2015, **161**, 79-82.
- 3. P. Fakhri, M. Nasrollahzadeh and B. Jaleh, RSC Advances, 2014, 4, 48691-48697.
- 4. A. B. Migdadi, Q. M. Al-Bataineh, A. A. Ahmad, H. M. Al-Khateeb and A. Telfah, Journal of Alloys and Compounds, 2024, **971**, 172794.
- 5. P. Lal Meena, J. Kumar Saini and A. Kumar Surela, *Inorganic Chemistry Communications*, 2023, **152**, 110688.
- 6. K. Qi, X. Wang, S. Liu, S. Lin, Y. Ma and Y. Yan, *Molecules*, 2024, **29**, 361.
- N. A. Chopan, A. H. Bhat and H.-T.-N. Chishti, *New Journal of Chemistry*, 2023, 47, 15922-15941.
- 8. P. L. Meena, K. Poswal, A. K. Surela, K. S. Meena and B. Mordhiya, *Environmental Science and Pollution Research*, 2023, **30**, 68770-68791.
- 9. P. L. Meena, A. K. Surela, J. K. Saini and L. K. Chhachhia, *Environmental Science* and Pollution Research, 2022, **29**, 79253-79271.