Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

A photochromic metal-organic framework with rare 3-D self-

interpenetrated architecture and ultrahigh MnO₄- sensing ability

Jinfang Zhang^{a,*}, Yinlong Yue^a, Xingyu Tao^a, Jiarun Zhang^a, Dejing Yin^b and Chi

Zhang^{a,c,*}

^a International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China

^b School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China

^c School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China

Table of contents

- 1. Table S1 The information of main chemicals.
- 2. Figure S1 The asymmetric unit of 1.
- 3. Figure S2 The coordination and connected environment of L and OBA²⁻.
- 4. Figure S3 1-D chains formed by OBA²⁻ and L.
- 5. Figure S4 The simulated and experimental PXRD of 1 and 1'.
- 6. Figure S5. The mass of the crystal of 1 before and after soaking in water for 7 days.
- 7. Figure S6 PXRD pattern of 1 after soaking in pH range 2-12 for 24 h.
- 8. Figure S7 The TGA of 1.

9. Figure S8 The crystal optical images of **1** (a); **1** after soaking in H₂O (b); **1'** after soaking in H₂O (c); **1** after soaking in MnO₄⁻ (d); **1'** after soaking in MnO₄⁻ (e).

10. Figure S9 Reusability of **1** for sensing MnO_4 -in H_2O and PXRD patterns of **1** after four cycles detecting MnO_4 -compared with original patterns.

11. Figure S10 Reusability of 1' for sensing MnO_4 -in H_2O and PXRD patterns of 1' after four cycles detecting MnO_4 -compared with original patterns.

Chemicals	Manufacturer
CBr_4	Adamas
PPh ₃	Adamas
Toluene	Titan
9,10-Anthracenedione	Adamas
4-pyridine boronic acid	Adamas
Pd(OAC) ₂	Adamas
Na ₂ CO ₃	Adamas
dioxane	Titan
ethyl acetate	Titan
dichloromethane	Titan
methanol	Titan
isopropanol	Titan
acetonitrile	Titan

Table S1 The information of main chemicals.

Figure S1. The asymmetric unit of **1** (Ni1, bright green; Ni2, sea green; N, blue; O pink; C, grey; all H atoms are omitted for clarity).

Figure S2. The coordination and connected environment of L (a) and OBA²⁻ (b) (Ni1, bright green; Ni2, sea green; N, blue; O pink; C, grey; all H atoms are omitted for clarity).

Figure S3. 1-D chains formed by OBA²⁻ (a, b) and L (c) (Ni1, bright green; Ni2, sea green; N, blue; O pink; C, grey; all H atoms are omitted for clarity).

Figure S4. The simulated and experimental PXRD of 1 and 1'.

Figure S5. The mass of the crystal of 1 before and after soaking in water for 7 days.

Figure S6. PXRD pattern of 1 after soaking in pH range 2-12 for 24 h.

Figure S7. The TGA of 1.

Figure S8. The crystal optical images of 1 (a); 1 after soaking in H_2O (b); 1' after soaking in H_2O (c); 1 after soaking in MnO_4^- (d); 1' after soaking in MnO_4^- (e).

Figure S9. Reusability of 1 for sensing MnO_4^- in H₂O and PXRD patterns of 1 after four cycles detecting MnO_4^- compared with original patterns.

Figure S10. Reusability of **1'** for sensing MnO_4^- in H_2O and PXRD patterns of 1' after four cycles detecting MnO_4^- compared with original patterns.