Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information

PPy@h-MoO₃ nanorods as cathode material for high-efficiency lithium-ion batteries

Reddeppa Nadimicherla^{a,b,c}, Luyi Chen^c, Siddheshwar Dadarao Raut^a, Won Chul Cho^{a*}

^aDepartment of Future Energy Convergence, Seoul National University of Science & Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea ^bDepartment of physics, Madanapalle Institute of Technology and Science, Madanapalle, 517325, India

Materials Science Institute, PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-Sen

University, Guangzhou 510275, P. R. China

Figure S1 TEM and EDS mapping of PPy@h-MoO₃ NRs and the related elemental mapping of Mo (green), O (red) and N (blue).

Figure S2 Charge-discharge voltage profiles of $h-MoO_3$ NRs for different cycles at voltage of 1.5-4 V.

Figure S3 Rate capability of PPy@h-MoO₃ NRs and h-MoO₃ NRs cathodes at various current densities.

Table S1. State-of-the-art of LIBs comparison of present cathode material performance with previously reported data.

Cathode Material/Morphology	Capacity (mA h g ⁻¹)	Current density (mA g ⁻¹)	Cycles	Ref.
h-MoO ₃ nanorods	852	30	100	
PPy@h-MoO3 nanorods	954	30	100	This work
PPy@h-MoO ₃ nanorods	289	100	50	
h-MoO ₃ nanorods	402	0.1 mA cm ⁻²	NA	[1]
MoO ₃ /PPy nanobelts	302	30	14	[2]
MoO ₃ /PVP/PVA nanobelts	303	NA	10	[3]
MoO ₃ /PEG nanobelts	313	0.4 mA cm ⁻²	20	[4]
V ₂ O ₅ doped MoO ₃	280	50	50	[5]
α -MoO ₃ nanobelts	264	30	50	[6]
α-MoO ₃ nanobelts	140	200	50	[7]
α-MoO ₃ nanofibers	250	74	100	[8]
α -MoO ₃ nanobelts	400	0.1 mA cm ⁻²	30	[9]
MoO ₃ /graphene	291	100	100	[10]
h-MoO ₃ nanoparticles	120	20	25	[11]

References

- J. Song, X. Wang, X. Ni, H. Zheng, Z. Zhang, M. Ji, T. Shen and X. Wang, *Mat. Res. Bull.*, 2005, 40, 1751-1756.
- Ch.V. S. Reddy, Z.R. Deng, Q.Y. zhu, Y. Dai, J. Zhou, W. Chen and S.-I. Mho, *Appl. Phys.* A, 2007, 89, 995-999.
- Ch.V. S. Reddy, Y. Y. Qi, W. Jin, Q.Y. Zhu, Z.R. Deng, W. Chen and S.-I. Mho, J. Solid State Electrochem., 2007, 11, 1239-1243.
- Ch.V. S. Reddy, E. H. Walker Jr., C. Wen, S.-I. Mho, *J. Power Sources*, 2008, 183, 330-333.
- X. Wei, L. Jiao, S. Liu, J. Sun, W. Peng, H. Gao, Y. Si and H. Yuan, J. Alloy. Compd., 2009, 486, 672-676.
- L. Zhou, L. Yang, P. Yuan, J. Zou, Y. Wu and C. Yu, J. Phys. Chem. C, 2010, 114, 21868-21872.
- 7. U. K. Sen and S. Mitra, RSC Adv., 2012, 2, 11123-11131.
- A.M. Hashem, H. Groult, A. Mauger, K. Zaghi and C.M. Julien, J. Power Sources, 2012, 219 126-132.
- 9. B. Gao, H. Fan and X. Zhang, J. Phys. Chem. Solids, 2012, 73, 423-429.
- L. Noerochim, J.-Z. Wang, D. Wexler, Z. Chao and H.-K. Liu, *J. Power Sources*, 2013, 228, 198-205.
- 11. Y. Xu, L. Xie, Y. Zhang, and X. Cao, *Electron. Mater. Lett.*, 2013, 9, 693-696.