Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information

Effect of Buffer on Direct Lithium Extraction Process of Tibetan Brine by

Formed Titanium-based Lithium Ion Sieves

Chunmei Tang,[‡] Lin Zhang,[‡] Jiayu Li, Huihui Yue, Wenjun Sun, Qun Cui ^{*}, Haiyan

Wang *

College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China

* Corresponding author: cuiqun@njtech.edu.cn. Tel: +86 025 83587188.

haiyanwang@njtech.edu.cn. Tel: +86 025 83587188.

‡ These authors contributed equally to this work.

Adsorbent	Initial concentration of Li ⁺ (g/L)	Buffer	Initial pH value	Adjusted pH value	Adsorption condition	Adsorption capacity of Li ⁺ (mg/g)	Increasing ratio of adsorption capacity (%)	Recovery ratio of Li⁺ (%)	Reference
H ₂ TiO ₃	1.950 (brine)	Ammonia	-	10.1	25 °C, 6 h	16.68	-	-	[1]
H ₂ TiO ₃	1.56 (brine)	Ca(OH) ₂	2.8	8.8	25 °C, 5 g/L, 24 h	~33	94.1	10	[2]
HaTiOa	1.63	NaHCO ₃	6.7	6.5	25 °C, 20 g/L,	32.6	-	40	[3]
1121103	(brine)	NaOH		~8	24 h	31.5	-	38.6	[5]
PVB-HTO	PVB-HTO 0.2		7 2	9.2	30 °C, 10 g/L,	~10	60	50	[4]
(H ₂ TiO ₃)	(Simulated brine)	Ammonia	7.2	5.2	5 h	12	00	50	[4]
P-HTO-NF	1.0			0 11	25 °C, 1 g/L,	E0 1	61.9	20	[5]
(H ₄ Ti ₅ O ₁₂)	(Simulated brine)	NaOn	0	11	12 h	59.1	01.9		
$H_4 Ti_5 O_{12}$	0.166 (Simulated brine)	КОН	-	13	25 °C, 2 g/L, 4 h	16.83	-	20	[6]
H ₂ TiO ₃	0.093 (Shale gas produced water)	KHCO₃	7.0	6.4	30 °C, 3 g/L, 24 h	18.32	-	59	[7]
PSF-HTO	0.025	NEOU			60 °C, 1 g/L,	22.00	o:100.0	00.7	[0]
(H ₂ TiO ₃)	(Geothermal water)	NaOH	8.8	12	2 h	22.66	~126.6	88.7	[8]
PVC-HTO	0.025			10	55 °C, 2 g/L,	~0		~70	[0]
(H ₂ TiO ₃)	(Geothermal water)	INdUT	-	12	12 h	9	-	70	[9]

Table S1. A summary of effect of adding buffer on lithium adsorption process by titanium-based lithium ion sieves

According to Table S1, when NaOH, NH₃·H₂O, Ca(OH)₂ and KOH were added in the brine or simulated brine, the pH value of the solution increased greatly due to the addition of a large amount of OH⁻, while the pH value of the solution basically remained unchanged after the addition of NaHCO₃ and KHCO₃. In addition, except geothermal water and shale gas produced water that with low concentration of Li⁺, the recovery ratio of Li⁺ in the brine or simulated brine was poor.

Table S2. Effect of the buffer on t	the pH value of Tibetan Brine
-------------------------------------	-------------------------------

Buffer	/	NaOH	NaHCO ₃	$NH_3 \cdot H_2O$	Ca(OH) ₂	KHCO ₃
pH value	8.26	9.84	7.84	9.74	12.20	7.70

Table S3. Main cations content and physical properties of Tibetan Brine and Tibetan Brine-

 Tura	Main cations content, mg/L						viscosity,
туре	Li+	Mg ²⁺	K+	Na+	Ca ²⁺	value	mPa/S
Tibetan Brine	879.4	3778.5	5997.3	26901	268.3	8.26	1.93
Tibetan Brine-NaHCO ₃	877.3	3643.2	5985.1	30903	210.6	7.84	1.99

Table S4. Fitting results of lithium adsorption on HTO-P in Tibetan Brine-NaHCO $_{3}$ and Tibetan

Isotherm model	parameter	Tibetan Brine-NaHCO ₃	Tibetan Brine
	q _m , mg/g	28.82	22.22
Langmuir	K _L , mg/g	0.0044	0.0027
	R ²	0.998	0.993
	K _F , L/g	2.70	0.78
Freundlich	n	3.14	2.24
	R ²	0.975	0.971
	q ₀ , mg/g	23.63	15.35
D-R	β, mol²/J²	0.00621	0.00687
	R ²	0.993	0.970

Brine by different isotherm models

Table S5. Fitting results of lithium adsorption on HTO-P in Tibetan Brine-NaHCO $_{3}$ and Tibetan

Parameter	Tibetan Brine-NaHCO ₃	Tibetan Brine
q _e , mg/g	21.168	13.366
k ₁ , 1/h	0.406	0.392
R ²	0.981	0.915
q _e , mg/g	22.256	14.735
k₂, g/(mg·h)	0.038	0.025
R ²	0.993	0.995
q _e , mg/g	21.914	13.996
k ₁ ', 1/h	0.116	0.0759
k₂', g/(mg∙h)	0.022	0.0161
R ²	0.990	0.992
	Parameter q_e , mg/g k_1 , 1/h R^2 q_e , mg/g k_2 , g/(mg·h) R^2 q_e , mg/g k_1' , 1/h k_2' , g/(mg·h) R^2	ParameterTibetan Brine-NaHCO3 $q_e, mg/g$ 21.168 $k_1, 1/h$ 0.406 R^2 0.981 $q_e, mg/g$ 22.256 $k_2, g/(mg \cdot h)$ 0.038 R^2 0.993 $q_e, mg/g$ 21.914 $k_1', 1/h$ 0.116 $k_2', g/(mg \cdot h)$ 0.022 R^2 0.990

Brine by different kinetic models

			Pe	eak			
Adcorbont	0-	O-Ti		HO ⁻ /Li-O ⁻		H ₂ O	
Ausorbent	Binding	Atomic ratio	Binding	Atomic ratio	Binding	Atomic ratio	
	energy (eV)	Atomic Tatio	energy (eV)	Atomic ratio	energy (eV)	Atomic ratio	
HTO-P	530.10	74.19%	531.60	21.85%	532.80	3.96%	
HTO-P(Li)-NaHCO₃	529.88	46.47%	531.21	46.89%	532.74	6.64%	
HTO-P(Li)	529.91	55.83%	531.36	33.05%	532.50	11.11%	

Table S6. O 1s peak parameters of HTO-P, HTO-P(Li)-NaHCO₃ and HTO-P(Li)

Brine under different adsorption temperatures

Table S7. Fitting results of lithium adsorption on HTO-P in Tibetan Brine-NaHCO3 and Tibetan

Tomporatura °C -	Tibetan Brine-NaHCO ₃			Tibetan Brine		
Temperature, C -	q _e , mg/g	k₂, g/(mg∙h)	k₂, g/(mg·h) R ²		k₂, g/(mg∙h)	R ²
30	22.256	0.038	0.993	14.735	0.025	0.995
40	23.749	0.061	0.986	16.171	0.046	0.998
50	25.489	0.067	0.987	17.991	0.043	0.999

Brine under different adsorption temperatures by PSO model

Reference

1 Z.-Y. Ji, F.-J. Yang, Y.-Y. Zhao, J. Liu, N. Wang and J.-S. Yuan, Chem. Eng. J., 2017, 328, 768-775.

- 2 S. Wang, P. Li, X. Zhang, S. Zheng and Y. Zhang, Hydrometallurgy, 2017, 174, 21-28.
- 3 R. Chitrakar, Y. Makita, K. Ooi and A. Sonoda, Dalton Trans., 2014, 43, 8933-8939.
- 4 Y. Zhang, J. Liu, Y. Yang, S. Lin and P. Li, Sep. Purif. Technol., 2021, 267, 118613.
- 5 S. Wei, Y. Wei, T. Chen, C. Liu and Y. Tang, Chem. Eng. J., 2020, 379, 122407.
- 6 B. Zhao, M. Guo, F. Qian, Z. Qian, N. Xu, Z. Wu and Z. Liu, RSC Adv., 2020, 10, 35153-35163.
- 7 Y. Jang and E. Chung, Ind. Eng. Chem. Res., 2018, 57, 8381-8387.
- 8 K. Zhao, B. Tong, X. Yu, Y. Guo, Y. Xie and T. Deng, Chem. Eng. J., 2022, 430, 131423.
- 9 H. Lin, X. Yu, M. Li, J. Duo, Y. Guo and T. Deng, ACS Appl. Mater. Interfaces, 2019, 11, 26364-

26372.