Revealing the mechanism of VO_x/Ti₃AlC₂ for the dehydrogenation of

propane

Shenghui Tao,^{ab} Xu Luo^a and Shan Xu *^a

^a State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences,

^b University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

* Correspondence author. E-mail: xushan@licp.cas.cn

Fig. S1 SEM images for Ti_3AlC_2 (a) and $1.2V/Ti_3AlC_2$ (b).

Fig. S2 NH₃-TPD profiles of Ti_3AIC_2 and supported VO_x/ Ti_3AIC_2 catalysts.

Lanzhou 730000, P. R. China.

Table S1 Analysis of V 2p of xV/Ti_3AlC_2 catalysts

Samples	Peak area fractions (%)	
	V ⁴⁺ (516.6 eV)	V ⁵⁺ (517.6 eV)
0.2V/Ti ₃ AlC ₂	59.0	41.0
1.2V/Ti ₃ AlC ₂	34.3	65.7
2.4V/Ti ₃ AlC ₂	25.1	74.9
4.1V/Ti ₃ AlC ₂	11.2	88.8

Fig. S3 O 1s XPS spectra of 0.2-4.1V/Ti $_3AIC_2$.

Fig. S4 The ODHP performance of Ti_3AIC_2 (a) and Ti_3AIC_2 calcined at 550 °C in air (b). Reaction conditions: $m_{cat} = 1.0g$, T=450-550 °C, $C_3H_8/Air=1: 1.2$, inlet flow = 8.8 ml min⁻¹.

Fig. S5 The influence of contact time (a) and catalyst particle size (b) on the C_3H_8 conversion at 500 °C.

0.2 and 0.3 g $1.2V/Ti_3AlC_2$ catalyst diluted with quartz sand were placed in a fixed bed to investigate to external diffusion influence. C_3H_8 conversion is almost same on the catalysts with different mass in the range of total space velocity of 6000-15750 ml h⁻¹g_{cat}⁻¹ (Figure S4(a)), suggesting that there is no effect of external diffusion. In addition, at a total space velocity of 12000 ml h⁻¹g_{cat}⁻¹, C_3H_8 conversion is similar in the range of catalyst particle size of 35-60 mesh (Figure S4(b)), which is the characteristic of internal diffusion exclusion.

Fig. S6 Dependence of $(x_{C_3H_8}x_{O_2}/r)^{1/2}$ on $x_{C_3H_8}$ (a) and x_{O_2} (b) in the range of $x_{C_3H_8} = 0.083 - 0.167$ and $x_{O_2} = 0.067 - 0.133$.

Fig. 57 Raman spectra for the spent $1.2V/Ti_3AlC_2$ catalysts after 2h reaction. Reaction conditions: ODHP reaction, $m_{cat} = 1.0$ g, $C_3H_8/Air=1$: 1.2 (C_3H_8 : $O_2 = 1$: 0.25), inlet flow = 8.8 ml min⁻¹; PDH reaction, $m_{cat} = 1.0$ g, $C_3H_8/N_2=1$: 1.2, inlet flow = 8.8 ml min⁻¹.

Fig. S8 TGA curves for the fresh $1.2V/Ti_3AlC_2$ catalyst and the spent $1.2V/Ti_3AlC_2$ catalysts after 2h reaction. Reaction conditions: ODHP reaction, $m_{cat} = 1.0 \text{ g}$, $C_3H_8/Air=1$: 1.2 (C_3H_8 : $O_2 = 1$: 0.25), inlet flow = 8.8 ml min⁻¹; PDH reaction, $m_{cat} = 1.0 \text{ g}$, $C_3H_8/N_2=1$: 1.2, inlet flow = 8.8 ml min⁻¹.

Fig. S9 Dependence of reaction rates on the partial pressure of (a) propane (8.3-16.7 kPa) and (b) oxygen (5-11.7 kPa) over different catalysts in ODHP reaction. The reactions were carried out at 500 °C and the total space velocity is 12000 mL h⁻¹ g_{cata}^{-1} .

Fig. S10 The PDH performance of Ti_3AlC_2 (a) and Ti_3AlC_2 calcined at 550 °C in air (b). Reaction conditions: $m_{cat} = 1.0g$, T=550 °C, $C_3H_8/N_2=1$: 4, inlet flow = 20 ml min⁻¹.

Fig. S11 TGA curves for the spent catalysts after 2h reaction. Reaction conditions: $m_{cat} = 1.0 \text{ g}$, T=550 °C, $C_3H_8/N_2=1$: 4, inlet flow = 20 ml min⁻¹.

Fig. S12 The catalytic performance of $1.2V/Ti_3AlC_2$ catalyst in ODHP (a) and PDH (b) reactions as a function of time. Reaction conditions: ODHP reaction, T=550 °C, $m_{cat} = 1.0 \text{ g}$, $C_3H_8/Air=1: 1.2$ ($C_3H_8: O_2 = 1: 0.25$), inlet flow = 8.8 ml min⁻¹; PDH reaction, T=550 °C, $m_{cat} = 1.0 \text{ g}$, $C_3H_8/N_2=1: 4$, inlet flow = 20 ml min⁻¹.

Fig. S13 XRD patterns of the $1.2V/Ti_3AlC_2$ catalysts after ODHP (a) and PDH (b) regenerative cycles.

Fig. S14 Raman spectra of the $1.2V/\text{Ti}_3\text{AlC}_2$ catalysts after ODHP (a) and PDH (b) regenerative cycles.

Fig. S15 TEM images and EDS mapping for 1.2V/Ti₃AlC₂ catalysts after ODHP (a, b) and PDH (c, d) regenerative cycles.