Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting information

Transamidation of Secondary Carboxamides and Amidation of Esters are Facilitated by Magnetic Co@NC Nanoparticles, as a Highly Efficient and Recyclable Catalyst Under Neat Conditions

Vishal Singh,^a Khushbu Rajput,^a Priya Mahaur,^a Sundaram Singh^a and Vandana Srivastava^{*a} Corresponding author: <u>vsrivastava.apc@iitbhu.ac.in</u>

*Department of Chemistry, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India

List of Contents

1.	Experimental section	S2
	1.1 General information	S2
	1.2 General procedure for the synthesis of Co-NTA	S2
	1.3 General procedure for the synthesis of Co@NC NPs	S3
	1.4 General procedure for the synthesis of amides	S3
	1.5 General procedure for the synthesis of N-Boc activated amides	S3
	1.6 General procedure for the Co@NC NPs catalyzed transamidation	S4
2.	Reusability graphs of Co@NC NPs- XRD, IR, SEM, TEM, and AFM	S4
3.	Compounds characterization	S6
	3.1 Characterization data of starting materials	S6
	3.2 Characterization data of transamidation products	S12
4.	¹ H, ¹³ C NMR, ¹⁹ F and mass spectra of products	S32
5.	References	S122

1. Experimental section

1.1 General information

All the chemicals were purchased from Sigma-Aldrich suppliers and used without further purification. Thin layer chromatography (TLC) was conducted with analytical thin layer percolated E. Merck 60 GF254 silica gel plates and spots were visualized using UV light and or iodine vapour and column chromatography was carried out using silica gel of 60-120 mesh size. The melting points were determined in open capillary melting point apparatus and are uncorrected. ¹H and ¹³C NMR spectra were recorded on Bruker Avance 500 MHz spectrometer in CDCl₃ and DMSO-d₆ using TMS as the internal standard at 500 and 126 MHz frequency respectively. All products synthesised were confirmed by using melting point, ¹H, ¹³C NMR, mass spectra and the reported compounds were compared with the literature data.

Materials for the synthesis of Co@NC

Merck, India, provided cobalt chloride hexa hydrated (CoCl₂.6H₂O), Sigma Aldrich provided the nitrilotriacetic acid (NTA), and SDFL, India provided the isopropanol. All the studies were carried out with deionized water that had been double-distilled.

1.2 General procedure for the synthesis of Co-NTA

0.002 mol CoCl₂·6H₂O was dissolved in 15 mL deionized water and agitated for 20 min to form a homogeneous solution. 0.005 mol of nitrilotriacetic acid (NTA) was distributed and swirled for 30 min in 15 mL of isopropyl alcohol. The NTA solution was added to the cobalt chloride solution and agitated for 30 min. The resultant mixture was transferred for 6 hours at 180 °C in a Teflon-lined autoclave (50 mL capacity). It was essential to let the autoclave drop to ambient temperature. The pink precipitate was collected, washed with deionized

water several times, and then centrifuged with ethanol at 8000 rpm for 10 min. In a hot air oven set to 60°C for overnight.¹

1.3 General procedure for the synthesis of Co@NC

Co-NTA fine powder (100 mg) was placed in a crucible boat and pyrolyzed for 3 hours at 600 $^{\circ}$ C in an N₂ environment. The tubular furnace was let to cool naturally at ambient temperature. Co@NC was used to represent the black powder that was collected.

Fig. S1 Synthesis of Co@NC

1.4 General procedure for synthesis of amides

All amides used in the study were synthesized by previously reported methods.²

1.5 General procedure for the synthesis of N-Boc activated secondary amides

N-Boc-activated amides were synthesized according to the reported method.³ To an ovendried round bottom flask, amide (1.0 equiv.), DMAP (0.1 equiv.) and dichloromethane were added, the reaction temperature was maintained at 0 °C to this Boc anhydride (1.5 equiv.) was added dropwise. After the addition of Boc anhydride, the reaction mixture was stirred for 14-24 h at room temperature. The progress of the reaction was monitored with TLC, after the completion of the reaction, mixture was concentrated under reduced pressure and purified by column chromatography and the product was obtained in excellent yield. Following the addition of Boc anhydride, the reaction mixture was stirred for 14-24 hours at room temperature. The reaction progress was tracked using TLC. Upon completion, the mixture was concentrated under reduced pressure and subjected to purification by column chromatography, yielding the product in excellent yield.

1.6 General procedure for Co@NC catalyzed transamidation

N-Boc activated amide (1.0 mmol), amine (1.5 mmol) and Co@NC (5 mg) were mixed in a round bottom flask. The mixture was heated at 60°C under solvent-free conditions, and the progress of reaction was monitored by TLC. Upon completion of the reaction, the mixture was diluted with ethyl acetate, and the catalyst was separated using an external magnet. Subsequently, the solvent was evaporated under vacuum, and the crude product was purified through column chromatography. All the products were confirmed using m.p., ¹H, ¹³C NMR and HRMS spectral data.

2. Reusability graphs of Co@NC

Fig. S2 IR data of Pure and Reused Co@NC

Fig. S3 XRD pattern of Co@NC

Fig. S4 AFM pattern of Co@NC

Fig. S5 SEM pattern of Co@NC

Fig. S6 TEM pattern of Co@NC

3. Compounds characterization

3.1 Characterization data of starting materials

tert-butyl benzoyl(benzyl)-carbamate (1a)

White solid; yield 94%; m.p. 72 °C; **1H NMR (500 MHz, CDCl3)** δ 7.46 (d, 2 H), 7.40–32. (m, 3 H), 7.30–7.25 (m, 4 H), 7.33 (t, 1 H), 7.20 (t, 1 H), 4.93 (d, 2 H), 1.06 (s, 9 H); **13C NMR (126 MHz, CDCl3)** δ 172.9, 153.4, 137.8, 137.6, 130.9, 128.3, 128.1, 127.9, 127.3, 127.2, 83.0, 48.8 27.2. HRMS (ESI) for C₁₉H₂₁NO₃ (m/z) [M + H]⁺ calcd: 312.1521, found: 312.1511.

tert-butyl benzyl(2-methylbenzoyl)-carbamate (1b)

Yield 94%; white solid; m.p. 69–71 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.82 (d, 1H), 7.53 (d, 1H), 7.44 (t, 2H), 7.40–7.28 (m, 5H), 4.54 (d, 2H), 2.86 (s, 3H), 1.40 (s, 9H); ¹³C NMR (126 MHz, CDCl₃): δ 173.5, 155.6, 139.8, 137.5, 136.9, 130.9, 130.5, 128.8, 128.5, 127.9, 127.8, 80.5, 41.8, 28.5, 20.1; HRMS (ESI) for C₂₀H₂₃NO₃ (m/z) [M + H]⁺ calcd: 326.1678found: 326.1691.

tert-butyl benzyl(3-methylbenzoyl)-carbamate (1c)

Yield 95%; white solid; m.p. 63 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.65 (s, 1H), 7.55 (d, 1H), 7.30 –7.23 (m, 2H), 7 .21 –7.16 (m, 5H), 4.52 (d, 2H), 2.85 (s, 3H,), 1.39 (s, 9H); ¹³C NMR (126 MHz, CDCl₃): δ 173.5, 155.5, 139.7, 137.5, 133.3, 131.3, 129.5, 128.5, 127.6, 127.8, 80.4, 41.8, 28.4, 21.1; HRMS (ESI) for C₂₀H₂₃NO₃ (m/z) [M + H]⁺ calcd: 326.1678 found: 326.1686.

tert-butyl benzyl (4-methylbenzoyl)-carbamate (1d)

Yield 88%; white solid; m.p. 58-60 °C; ¹HNMR (500 MHz, CDCl₃): δ 8.96 (t, 1H), 7.81 (d, 2H), 7.33-724 (d, 6H), 4.48 (m, 2H), 3.36 (s, 9H), 2.36 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 172.8, 141.9, 138.2, 133.4, 130.2, 129.7, 128.5, 128.2, 127.4, 44.3, 27.5. 21.3; HRMS (ESI) for C₂₀H₂₃NO₃ (m/z) [M+H]+ calcd: 326.1678, found: 326.1684

tert-butyl benzyl(2-chlorobenzoyl)-carbamate (1e)

Yield 88%; white solid; m.p. 65 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.47-7.52 (m, 3H), 7.28–7.41 (m, 6H), 4.66 (d, 2H), 1.22 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 166.5, 137.8, 130.1, 131.5, 130.8, 130.4, 130.3, 128.9, 128.0, 127.8, 127.3, 81.9, 44.4, 28.4. HRMS (ESI) for C₁₉H₂₀CINO₃ (m/z) [M + H]+ calcd: 346.1132, found: 346.1151.

tert-butyl benzyl(4-chlorobenzoyl)-carbamate (1f)

Yield 88%; white solid; m.p. 61 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.70 (d, 2H), 7.62 (d, 2H), 7.37 (t, 2H), 7.29 (d, 2 H), 7.12 (t, 1H), 4.01 (d, 2H), 1.21 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 172.6, 162.3, 153.7, 138.2, 130.0, 129., 128.5, 128.1, 127.4, 1.3.4, 73.2, 42.5, 27.5. HRMS (ESI) for C₁₉H₂₀ClNO₃ (m/z) [M + H]+ calcd: 346.1132, found: 346.1144.

tert-butyl benzyl(2-nitrobenzoyl)-carbamate (1g)

Yield 88%; white solid; m.p. 65-67 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.0-8.07 (d, 1H), 7.85-7.87 (d, 1H), 7.63-7.66 (m, 2H), 7.32-7.34 (d, 2H), 7.26-7.28 (m, 2H), 7.21 (t, 1H), 4.69 (s, 2 H), 1.27 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 174.4, 155.2, 148.1, 138.5, 135.3, 133.8, 129.7, 129.5, 128.5, 128.2, 126.1, 123.1, 84.5, 41.7, 28.3. HRMS (ESI) for C₁₉H₂₀N₂O₅ (m/z) [M+H]+ calcd: 357.1372, found: 357.1356.

tert-butyl benzyl(3-nitrobenzoyl)-carbamate (1h)

Yield 88%; white solid; m.p. 73 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.60 (s, 1H), 8.35 (d, 1H), 8.19 (d, 1H), 7.61-7.65 (m, 1H), 7.31-7.36 (d, 5H), 4.67 (d, 2H), 1.25 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 170.3, 152.9, 148.0, 138.5, 138.4, 133.8, 129.7, 129.5, 128.5, 128.2, 126.0, 123.1, 84.5, 44.5, 28.5, 27.7. HRMS (ESI) for C₁₉H₂₀N₂O₅ (m/z) [M + H]+ calcd: 357.1372 found: 357.1366.

tert-butyl benzyl(4-nitrobenzoyl)-carbamate (1i)

White solid; yield 94%; m.p. 78-79 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.17 (d, 2H), 7.83 (d, 2H), 7.34-7.27 (m, 5H), 4.65 (s, 2H) 1.24 (s, 9H); ¹³C NMR (125 MHz, CDCl₃); δ 170.4, 153.0, 148.1, 138.6, 138.6, 129.7, 129.6, 128.5, 128.2, 123.1, 84.60, 41.77, 27.79. HRMS (ESI) for C₁₉H₂₀N₂O₅ (m/z) [M+ H]⁺ calcd: 357.1372 found: 357.1379.

tert-butyl benzyl(4-(trifluoromethyl)benzoyl)-carbamate (1j)

White solid; yield 94%; m.p. 79 °C; ¹H NMR (500 MHz, CDCl3) δ 7.62 (d, 2H), 7.58 (d, 2 H), 7.39 (d, 2H), 7.32 (t, 2 H), 7.26 – 7.23 (t, 1H), 5.01 (s, 2H), 1.17 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 171.8, 153.0, 141.2, 137.6, 132.7 (q, JCF = 32.8 Hz) 128.6, 128.2, 127.7, 127.6, 125.2 (q, JCF = 3.7 Hz,), 124.8, (q, JCF = 272.1 Hz), 1C 84.02, 48.90, 27.52; ¹⁹F NMR (471 MHz, CDCl₃) δ -62.89. HRMS (ESI) for C₂₀H₂₀F₃NO₃ (m/z) [M + H]+ calcd: 380.1395 found: 380.1377.

tert-butyl (4-methoxybenzoyl)(phenyl)-carbamate (1k)

Yield 88%; white solid; m.p. 143-145 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.44 (d, 2H), 7.33 (d, 2H), 7.27 (d, 2H), 7.19 (t, 1H), 6.78 (d, 2H), 3.70 (s, 3H), 1.07 (s, 9H); ¹³C NMR (126 MHz, CDCl₃); δ 172.7, 162.3, 153.8, 138.1, 130.0, 129.6, 128.5, 128.1, 127.4, 113.4, 82.9, 55.4, 27.4; HRMS (ESI) for C₁₉H₂₁NO₄ (m/z) [M + H]+ calcd: 328.1471 found: 328.1467.

tert-butyl (4-fluorobenzoyl) (phenyl)-carbamate (11)

Yield 88%; white solid; m.p. 75 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.98 (d, 2H), 7.33-7.23 (m, 7H), 1.11 (s, 9H); ¹³C NMR (126 MHz, CDCl₃); δ 174.3, 165.0 (d, JCF = 248.22 Hz), 139.7, 130.0 (d, JCF = 3.75 Hz), 129.9 (d, JCF = 8.75 Hz), 128.4, 127.3, 126.8, 115.6 (d, JCF = 21.42 Hz), 81.1, 28.0; ¹⁹F NMR (471 MHz, CDCl₃): δ -63.2; HRMS (ESI) for C₁₈H₁₈FNO₃ (m/z) [M + H]+ calcd: 316.1271 found: 316.1254.

tert-butyl acetyl(phenyl)-carbamate (1m)

Yield 84%; white solid; m.p. 70 °C; ¹H NMR 500 MHz, CDCl₃): δ 7.73 (d, 2H), 7.47-7.41 (m, 1H), 7.39 (t, 2H), 7.34 (d, 1H), 7.25 (t, 2H), 7.07 (t, 1H), 2.44 (s, 3H), 1.46 (s, 9H); ¹³C NMR (126 MHz, CDCl₃); δ 167.9, 151.4, 138.9, 134.7, 133.2, 132.4, 130.9, 129.9, 129.1, 128.8, 126.4, 81.3, 28.8, 18.8; HRMS (ESI) for C₁₉H₂₁NO₃ (m/z) [M + H]⁺ calcd: 312.1521 found: 312.1531.

tert-butyl acetyl(phenyl)-carbamate (1n)

Yield 84%; white solid; m.p. 68 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.79 (d, 2H), 7.49 (t, 1H), 7.43 (t, 2H), 7.39 (d, 1H), 7.28-7.27 (m, 2H) 7.15 (t, 1H); 1.55 (s, 9H); ¹³C NMR (126 MHz, CDCl₃): δ 166.5, 152.3, 137.9, 135.1, 133.7, 132.2, 129.9, 128.9, 128.1 127.4, 83.6, 27.9; HRMS (ESI) for C₁₈H₁₈ClNO₃ (m/z) [M+H]⁺ calcd: 332.0975 found: 332.0979.

tert-butyl acetyl(phenyl)-carbamate (10)

Yield 84%; white solid; m.p. 58 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.43-7.39 (m, 2H), 7.37-7.33 (m, 1H), 7.11-7.10 (m, 2H), 2.59 (s, 3H), 1.40 (s, 9H); ¹³C NMR (126 MHz, CDCl₃): δ 173.9, 152.8, 139.1, 129.1, 128.4, 128.0, 83.4, 28.0, 26.7; HRMS (ESI) for C₁₃H₁₇NO₃ (m/z) [M+H]⁺ calcd: 236.1208 found: 236.1211.

tert-butyl acetyl(4-bromophenyl)-carbamate (1p)

Yield 84%; white solid; m.p. 122 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.54 (d, 2H), 6.98 (d, 2H), 2.61 (s, 3H), 1.41 (s, 9H); ¹³C NMR (126 MHz, CDCl₃): δ 172.8, 152.3, 137.9, 132.2, 129.9, 121.7, 83.6, 27.9, 26.5; HRMS (ESI) for C₁₃H₁₆BrNO₃ (m/z) [M+H]⁺ calcd: 314.0314 found: 314.0308.

tert-butyl acetyl(4-fluorophenyl)-carbamate (1q)

Yield 84%; white solid; m.p. 116 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.18 (d, 2H), 7.53 (d, 2H), 2.59 (s, 3H), 1.39 (s, 9H); ¹³C NMR (126 MHz, CDCl₃): δ 172.8, 152.7, 138.0, 132.3, 130.1, 121.8, 83.9, 27.9, 26.6; HRMS (ESI) for C₁₃H₁₆FNO₃ (m/z) [M + H]⁺ calcd: 254.1114 found: 254.1118.

tert-butyl isobutyryl(phenyl)-carbamate (1r)

Yield 82%; yellow oil; ¹H NMR (500 MHz, CDCl₃): δ 7.30 (t, 2H), 7.23 (d, 1H) 7.20-6.97 (m, 2H), 3.57-3.51 (m, 1H), 1.30 (s, 9H), 1.15 (d, 6H); ¹³C NMR (126 MHz, CDCl₃): δ 180.4, 152.7, 139.5, 128.9, 128.1, 127.6, 82.9, 34.8, 30.0, 20.4; HRMS (ESI) for C₁₅H₂₁NO₃ (m/z) [M + H]⁺ calcd: 264.1521 found: 264.1513.

tert-butyl phenyl(pivaloyl)-carbamate (1s)

Yield 84%; white solid; m.p. 88 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.30 (t, 2H), 7.27 (d, 1H), 6.99 (t, 1H), 1.51 (s, 9H), 1.30 (s, 9H); ¹³C NMR (126 MHz, CDCl₃): δ 180.5, 180.4, 152.8, 139.5, 129.0, 128.2, 127.7, 83.0, 40.2, 28.8 27.3; HRMS (ESI) for C₁₆H₂₃NO₃ (m/z) [M + H]⁺ calcd: 278.1678 found: 278.1651.

3.2 Characterization Data of Transamidation Products

Morpholino(phenyl)-methanone (3a)

Yield 94%; Yellow solid; m.p. 73-75 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.42-7.41 (m, 5H), 3.77-3.44 (m, 8H), ¹³C NMR (126 MHz, CDCl₃): δ 170.4, 135.5, 129.7, 128.4, 127.3, 66.7, 48.5, 42.4; HRMS (ESI) for C₁₁H₁₃NO₂ (m/z) [M+H]⁺ calcd: 192.0946 found: 192.0940.

N-phenylbenzamide (3b)

Yield 94%; white solid; m.p. 164 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.90 (d, 3H), 7.68 (d, 2H), 7.56 (t, 1H), 7.40 (t, 2H), 7.19 (t, 2H), 7.16 (t, 1H); ¹³C NMR (126 MHz, CDCl₃): δ 165.9, 137.8, 135.0, 131.8, 129.2, 128.8, 127.1, 124.5, 120.4; HRMS (ESI) for C₁₃H₁₁NO (m/z) [M + H]⁺ calcd: 198.0841 found: 198.0853.

N-(2-methoxyphenyl)-benzamide(3c)

Yield 88%; White solid; m.p. 60 °C; ¹HNMR (500 MHz, CDCl₃): δ 8.58 (t, 2H), 7.92 (m, 2H), 7.57-7.50 (m, 3H), 7.10 (m, 2H), 6.95-6.93 (d, 1H), 3.94 (s, 3H); ¹³CNMR (125 MHz, CDCl₃): δ 165.5, 148.4, 135.6, 131.9, 128.9, 128.0, 127.3, 124.1, 121.4, 120.0, 110.1, 56.0; HRMS (ESI) for C₁₄H₁₃NO₂ (m/z) [M + H]⁺ calcd: 228.0946 found: 228.0935.

N-(3-methoxyphenyl)-benzamide(3d)

Yield 94%; White solid; m.p. 108 °C; ¹HNMR (500 MHz, CDCl₃): δ 7.67 (d, 2H), 7.38 (s, 1H), 7.31-7.30 (d, 3H), 7.27-7.22 (m, 1H), 7.15-7.14 (m, 1H), 6.92-6.91 (m, 1H), 6.73-6.71 (d, 1H), 3.80 (s, 3H); ¹³CNMR (126 MHz, CDCl₃): δ 165.7, 156.7, 138.8, 135.0, 131.8, 129.3, 128.8, 127.1, 112.3, 110.1, 105.2, 55.6; HRMS (ESI) for C₁₄H₁₃NO₂ (m/z) [M + H]⁺ calcd: 228.0946 found: 228.0955.

N-(4-methoxyphenyl)-benzamide(3e)

Yield 94%; Green solid; m.p. 153-154°C; ¹HNMR (500 MHz, CDCl₃): δ 7.88-7.85 (m, 3H), 7.56-7.53 (m, 3H), 7.49-7.46 (m, 2H), 7.27-6.90 (d, 2H), 3.82 (s, 3H); ¹³CNMR (126 MHz, CDCl₃): δ 165.6, 156.6, 135.0, 131.6, 130.9, 128.7, 126.9, 122.1, 114.2 55.6; HRMS (ESI) for C₁₄H₁₃NO₂ (m/z) [M + H]⁺ calcd: 228.0946 found: 228.0934.

N-(2-nitrophenyl)-benzamide(3f)

Yield 84%; White solid; m.p. 96 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.60 (d, 1H), 8.58 (s, 1H), 8.47 (d, 2H), 7.95-7.94 (t, 1H), 7.62-7.54 (t, 2H), 7.44-7.42 (dd, 1H), 7.36-7.34 (m, 1H), 7.10-7.09 (m, 1H); ¹³C NMR (126 MHz, CDCl₃): δ 165.5, 134.9, 134.8, 132.4, 129.2, 129.1, 128.0, 127.3, 125.3, 124.9, 123.2 HRMS (ESI) for C₁₃H₁₀N₂O₃ (m/z) [M + H]⁺ calcd: 243.0691 found: 243.0689.

N-(3-nitrophenyl)-benzamide(3g)

Yield 86%; Yellow oil; ¹H NMR (500 MHz, $CDCl_3$); δ 11.09 (s, 1H), 8.77 (s, 1H), 8.60–8.59 (m, 1H), 8.45–8.44 (m, 1H), 8.38-8.37 (s, 2H), 8.30-8.27 (m, 1H), 8.17-8.14 (m, 1H), 8.12-8.09 (m, 1H). ¹³CNMR (126 MHz, CDCl₃); δ 165.5, 148.9, 138.3, 134.8, 132.4, 129.2, 129.1, 128.0, 127.3, 121.7, 116.5. HRMS (ESI) for C₁₃H₁₀N₂O₃ (m/z) [M + H]⁺ calcd: 243.0691 found: 243.0685.

N-(4-nitrophenyl)-benzamide(3h)

Yield 86%; White solid; m.p. 194°C; ¹HNMR (500 MHz, DMSO-d₆): δ 10.83 (s, 1H), 8.28 (d, 2H), 8.08 (d, 2H), 7.99-7.97 (m, 2H), 7.66 (d, 1H), 7.63-7.56 (m, 2H); ¹³CNMR (126 MHz, DMSO-d₆): δ 166.4, 145.4, 142.6, 134.2, 132.4, 128.8, 128.0, 124.9, 120.0, 119.9. HRMS (ESI) for C₁₃H₁₀N₂O₃ (m/z) [M + H]⁺ calcd: 243.0691 found: 243.0688.

N-(4-fluorophenyl)-benzamide(3i)

Yield 84%; White solid m.p. 184–186 °C; ¹H NMR (500 MHz, DMSOd₆): δ 10.32 (s, 1H), 7.96 (d, 2H), 7.81 (d, 2H), 7.62 (t, 1H), 7.56 (d, 2H), 7.21 (t, 2H); ¹³C NMR (126 MHz, DMSO-d₆): δ 165.8, 159.6 (d, JCF = 240.6 Hz), 135.9, 135.3 (d, JCF = 3.7 Hz), 132.0, 128.8, 128.0, 122.6 (d, JCF = 5.0 Hz), 115.7 (d, JCF = 22.6 Hz); ¹⁹F NMR (471 MHz, CDCl₃): δ - 117.9; HRMS (ESI) for C₁₃H₁₀FNO (m/z) [M + H]⁺ calcd: 216.0746 found: 216.0736.

Phenyl(piperidin-1-yl)-methanone (3j)

Yield 91%; Yellow solid; m.p.73–75°C; ¹HNMR (500 MHz, CDCl₃): δ 7.41–7.42 (m, 5H), 3.78–3.46 (m, 8H), ¹³CNMR (126 MHz, CDCl₃): δ 170.4, 135.5, 129.7, 128.4, 127.3, 66.7, 48.5, 42.4; HRMS (ESI) for C₁₁H₁₃NO₂ (m/z) [M+H]⁺ calcd: 192.0942, found: 192.0950.

Piperazine-1,4-diylbis(phenylmethanone) (3k)

White solid; yield 93%; mp 194-95 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.42 (s, 10H), 3.75 (d, 8H); ¹³C NMR (126 MHz, CDCl₃) δ 170.8, 135.2, 130.2, 128.7, 127.1, 48.5, 43.3. HRMS (ESI) for C₁₈H₁₈N₂O₂ (m/z) [M + H]⁺ calcd: 295.1368 found: 295.1385.

N-methylbenzamide (3I)

Yield 94%; yellow solid; m.p. 81-82°C; ¹HNMR (500 MHz, CDCl₃): δ 7.76-7.74 (m, 2H), 7.48-7.45 (m, 1H), 7.41-7.38 (m, 2H), 6.42 (s, 1H), 2.98 (s, 3H); ¹³CNMR (126 MHz, CDCl₃): δ 168.5, 134.8, 131.5, 128.7, 127.0, 27.0; HRMS (ESI) for C₈H₉NO (m/z) [M + H]⁺ calcd: 136.0684 found: 136.0675.

N-methylbenzamide (3m)⁷

Yellow oil; yield 94%; ¹H NMR (500 MHz, CDCl₃) δ 7.78-7.76 (m, 2H), 7.51-7.48 (m, 1H), 7.45-7.42 (t, 2H), 6.17 (s, 1H), 3.49-3.45 (q, 2H), 1.66-1.58 (m, 2H), 1.46-1.39 (m, 2H), 0.98 (t, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 167.7, 135.0, 131.4, 130.7, 128.7, 126.9, 39.9, 31.8, 20.3, 13.9. HRMS (ESI) for C₁₁H₁₅NO (m/z) [M + H]⁺ calcd: 178.1154 found:178.1165.

N,N-dioctylbenzamide (3n)

Yield 85%; Dark brown oil; ¹HNMR (500 MHz, CDCl₃) δ 7.39-7.34 (m, 5H), 3.48 (s, 2H), 3.18 (s, 2H), 1.66 (d, 4H), 1.49-1.12 (m, 20H), 0.99 (s, 6H); ¹³CNMR (126 MHz, CDCl₃); δ 171.8, 137.6, 129.1, 128.5, 128.5, 126.6, 49.1, 44.9, 32.8, 30.0, 29.4, 28.2, 27.4, 26.9, 22.8, 19.3, 14.2. HRMS (ESI) for C₂₃H₃₉NO (m/z) [M + H]⁺ calcd: 346.3032 found: 346.3025.

N-(tert-butyl)-benzamide (30)

Yield 82%; White solid; m.p. 134-135 °C; ¹HNMR (500 MHz, CDCl₃) δ 7.73-7.71 (d, 2H), 7.57-7.43 (m, 1H), 7.41-7.40 (m, 2H), 5.91 (s, 1H), 1.48 (s, 9H); ¹³CNMR (126 MHz, CDCl₃); δ 167.0, 136.0, 131.2, 128.6, 126.8, 51.7, 29.0. HRMS (ESI) for C₁₁H₁₅NO (m/z) [M + H]⁺ calcd: 178.1154, found: 178.1165.

N-(3s,5s,7s)-adamantan-1-yl)-benzamide (3p)

Yield 81%; white solid; m.p. 141–142 °C; ¹HNMR (500 MHz, CDCl₃): δ 7.74-7.72 (m, 2H), 7.50-7.46 (m, 1H), 7.44-7.21 (m, 2H), 5.82 (s, 1H), 2.15 (s, 9H), 1.75 (d, 6H); ¹³C NMR (125 MHz, CDCl₃); δ 166.9, 162.6, 136.3, 134.8, 131.3, 130.8, 129.1, 129.1, 128.7, 126.9, 52.5, 41.9, 36.6, 29.7; HRMS (ESI) for C₁₇H₂₁NO (m/z) [M + H]⁺ calcd: 256.1623 found: 256.1634.

N-(2,6-dichlorophenyl)-benzamide (3q)

Yield 85%; white solid; m.p. 115-117 °C; ¹HNMR (500 MHz, DMSOd₆): δ 10.11 (s, 2H), 8.00 (d, 2H), 7.74 (s, 1H), 7.65-7.63(d, 1H), 7.55-7.554 (m, 1H), 7.50-7.48 (m, 2H); ¹³CNMR (126 MHz, DMSOd₆); δ 164.0, 139.2, 134.2, 131.6, 131.5, 130.6, 130.5, 129.5, 128.7, 128.1 HRMS (ESI) for C₁₃H₉Cl₂NO (m/z) [M+H]⁺ calcd: 266.0061 found: 266.0043.

N-(2-ethyl-6-methylphenyl)-benzamide (3r)

Yield 86%; White solid; mp, 167-168 0C; ¹HNMR (500 MHz, DMSOd₆); δ 9.77 (s, 1H), 8.01 (d, 2H), 7.61-7.59 (m, 1H), 7.55-7.52 (m, 1H), 7.20-7.17 (m, 1H), 7.15-7.14 (m, 1H), 2.59-2.51 (m, 2H), 2.18 (s, 3H), 1.19 (t, 3H); ¹³CNMR (126 MHz, DMSO-d₆) δ 165.5, 141.5, 136.0, 134.8, 134.5, 131.5, 128.5, 127.7, 127.5, 127.0, 126.1, 24.5, 18.1, 14.6 HRMS (ESI) for C16H17NO (m/z) [M + H]⁺ calcd: 240.1310 found: 240.1325.

N-(3-hydroxypyridin-2-yl)-benzamide (3s)

Yield 86%; White solid; m.p. 93–96 °C; ¹HNMR (500 MHz, DMSOd₆): δ 7.97 (d, 1H), 7.72 (d, 2H), 7.39-7.35 (m, 1H), 7.30-7.29 (m, 2H,), 7.27 (s, 1H), 7.24 (d, 1H), 7.23 (m, 1H,) 4.54 (s, 1H,); ¹³CNMR (126 MHz, DMSO-d₆): δ 168.9, 146.7, 143.3, 138.9, 134.5, 131.4, 129.9, 129.5, 124.71, 120.0; HRMS (ESI) for C₁₂H₁₀N₂O₂ (m/z) [M+H]⁺ calcd: 215.0742 found: 215.0748.

N-(4-methylpyridin-2-yl)-benzamide(3t)

Yield 90%; White solid; m.p. 114-115 °C; ¹HNMR (500 MHz, DMSOd₆); δ 8.12 (d, 1H), 7.65 (d, 2H), 7.51 (s, 1H), 7.34-7.32 (m, 1H), 7.30-7.28 (m, 2H), 7.23 (s, 1H), 7.06 (s, 1H), 2.31 (s, 3H); ¹³C NMR (126 MHz, DMSO-d₆); δ 165.8, 152.8, 152.3, 148.1, 133.1, 131.9, 129.4, 128.8, 127.7, 120.8, 19.2; HRMS (ESI) for C₁₃H₁₂N₂O (m/z) [M + H]⁺ calcd: 213.0945 found: 213.0938.

2-methyl-*N*-phenylbenzamide (4a)

Yield 87%; yellow solid; m.p. 126-127 °C; ¹HNMR (500 MHz, DMSOd₆); δ 7.77 (d, 1H), 7.50-7.46 (m, 3H), 7.41-7.36 (d, 3H), 7.21-7.20 (m, 1H), 2.36 (s, 3H); ¹³CNMR (126 MHz, DMSO-d₆); δ 171.9, 138.4, 135.9, 134.7, 131.8, 128.7, 128.6, 127.5, 126.7, 124.4, 121.9, 20.1 HRMS (ESI) for C₁₄H₁₃NO (m/z) [M+H]⁺ calcd: 212.0997 found: 212.0975.

3-methyl-*N*-phenylbenzamide (4b)

Yield 91%; white solid; m.p. 128-129 °C; ¹HNMR (500 MHz, CDCl₃); δ 7.62 (d, 1H), 7.59 (s, 1H), 7.42-7.38 (m, 1H), 7.37-7.35 (m, 6H), 7.18 (t, 1H), 2.33 (s, 3H); ¹³C NMR (126 MHz, CDCl₃); δ 168.9, 139.2, 136.9, 134.9, 131.9, 129.4, 128.9, 127.8, 127.5, 124.6, 121.3, 24.5. HRMS (ESI) for C₁₄H₁₃NO (m/z) [M+H]⁺ calcd: 212.0997 found: 212.0984.

4-methyl-N-phenylbenzamide (4c)

Yield 90%; White solid; M.p. 145-146 °C; ¹HNMR (500 MHz, DMSOd₆): δ 8.50 (s, 1H), 8.06 (d, 2H), 7.78 (d, 2H), 7.39-7.34 (m, 4H), 7.13 (t, 1H), 2.36 (s, 3H); ¹³CNMR (126 MHz, DMSO-d₆) δ 168.9, 141.6, 136.7, 132.5, 129.4, 128.9, 127.8, 124.6, 121.3, 24.5. HRMS (ESI) for C₁₄H₁₃NO (m/z) [M+H]⁺ calcd:212.0997 found: 212.0974.

2-chloro-N-phenylbenzamide (4d)

Yield 90%; yellow solid; m.p. 72-74 °C; ¹HNMR (500 MHz, CDCl₃): δ 9.44 (s, 1H), 8.60 (d, 1H), 7.95 (t, 2H), 7.62 (m, 1H), 7.59-7.54 (m, 2H), 7.52 (t, 1H), 7.44-7.34 (m, 1H), 7.12-7.09 (m, 1H). ¹³CNMR (126 MHz, CDCl₃); δ 166.0, 134.8, 134.8, 132.3, 129.2, 129.0, 128.0, 127.2, 124.8, 123.2, 121.6. HRMS (ESI) for C₁₃H₁₀CINO (m/z) [M+H]⁺ calcd:232.0451 found: 232.0455.

4-chloro-*N*-phenylbenzamide (4e)

Yield 94%; yellow solid; m.p. 165 °C; ¹HNMR (500 MHz, DMSO-d₆): δ 10.25 (s, 1H), 7.94 (d, 2H), 7.79 (d, 2H), 7.60-7.55 (t, 1H), 7.53-7.52 (m, 1H), 7.42-7.40 (m, 1H). ¹³CNMR (126 MHz, DMSO-d₆); δ 167.8, 138.1, 134.7, 133.7, 128.7, 128.6, 127.8, 127.4, 122.0, 121.9. HRMS (ESI) for C₁₃H₁₀CINO (m/z) [M+H]⁺ calcd: 232.0451 found: 232.0467.

2-nitro-N-phenylbenzamide (4f)

Yield 90%; yellow solid; m.p. 137 °C; ¹HNMR (500 MHz, DMSO-d₆): δ 8.73 (s, 1H), 8.13 (d, 1H), 7.96 (d, 1H), 7.72-7.69 (t, 1H), 7.67-7.65 (m, 1H), 7.42 (t, 2H), 7.36 (t, 2H), 7.13 (t, 1H), ¹³CNMR (126 MHz, DMSO-d₆); δ 166.0, 148.6, 136.4, 132.4, 129.2, 129.1, 128.0, 127.2, 124.9, 124.2, 123.2, 121.6. HRMS (ESI) for C₁₃H₁₀N₂O₃ (m/z) [M+H]⁺ calcd: 243.0691, found: 243.0675.

3-nitro-N-phenylbenzamide (4g)

Yield 92%; yellow solid; m.p. 72-74°C; ¹HNMR (500 MHz, CDCl₃): δ 8.60 (s, 1H), 8.35 (d, 1H), 8.18 (d, 1H), 7.65 (t, 1H), 7.35-7.31 (m, 4H), 6.73 (d, 1H). $^{13}\text{CNMR}$ (126 MHz, CDCl_3); δ HRMS (ESI) for

C₁₃H₁₀N₂O₃ (m/z) [M+H]⁺ calcd: 243.0691, found: 243.0695.

2-methyl-N-phenylbenzamide (4h)

Yield 94%; yellow solid; m.p. 144-146 °C; ¹HNMR (500 MHz, DMSOd₆): δ 9.06 (s, 1H), 7.99 (d, 2H), 7.33-7.25 (m, 7H). ¹³CNMR (126 MHz, DMSO-d₆); δ 165.6, 150.9, 140.1, 136.5, 128.7, 127.7, 127.2, 124.3, 122.5. HRMS (ESI) for C₁₃H₁₀N₂O₃ (m/z) [M+H]⁺ calcd:243.0691, found: 243.0685.

2-methyl-N-phenylbenzamide (4i)

Yield 94%; White solid. M.p. 207 – 208 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.66 (d, 2H), 7.49 (d, , 2H), 7.36 (s, 1H), 7.32 – 7.26 (m, 4H), 7.18 (t, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 168.5, 140.8, 134.8, 132.6 (d, JCF = 32.8 Hz), 131.8, 129.5, 128.8 (q, JCF = 3.8 Hz), 128.1 (q, JCF = 273.4 Hz), 127.8, 127.0 HRMS (ESI) for C₁₄H₁₀F₃NO (m/z) [M+H]⁺ calcd: 266.0714, found: 266.0725.

2-methyl-N-phenylbenzamide (4j)

Yield 88%; White solid. M.p. 168–170 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.20 (d, 2H), 7.86 (d, 3H), 7.54–7.45 (m, 5H), 3.81 (s, 3H). ¹³C NMR (126 MHz, CDCl₃); δ 165.8, 161.1, 135.1, 131.8, 131.1, 128.9, 127.1, 122.3, 114.4, 55.6 HRMS (ESI) for C₁₄H₁₃NO₂ (m/z) [M+H]⁺ calcd: 228.0946, found: 228.0965.

4-fluoro-*N*-methyl-*N*-phenylbenzamide (4k)

Yield 93%; White solid. M.p. 187 –188 °C.; ¹H NMR (500 MHz, DMSO-d₆): δ 10.25 (s, 1H), 8.06 (d, 2H), 7.76 (d, 2H), 7.39 –7.34 (m, 4H), 7.11 (t, 1H); ¹³C NMR (126 MHz, DMSO-d₆) δ 165.5 (d, JCF = 253.3 Hz), 163.5, 139.5, 131.8 (d, JCF = 3.7 Hz), 130.8 (d, JCF = 8.8 Hz), 129.0, 124.2, 120.9, 115.8 (d, JCF = 21.4 Hz); HRMS (ESI) for C₁₃H₁₀FNO (m/z) [M+H]⁺ calcd: 216.0746, found: 216.0755.

tert-butyl acetyl(phenyl)-carbamate (4l)

Yield 90%; white solid; m.p. 58 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.95 (s, 1H), 7.54 (d, 2H), 7.33 (d, 2H), 7.13 (d, 1H), 2.17 (s, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 168.8, 138.0, 128.9, 124.3, 120.1, 24.4 HRMS (ESI) for C8H9NO (m/z) [M + H]⁺ calcd: 136.0684, found: 136.0661.

2-methyl-N-phenylbenzamide (4m)

Yield 88%; yellow solid; m.p. 74 °C; ¹HNMR (500 MHz, CDCl₃): δ 7.93 (s, 1H), 7.52 (t, 2H), 7.31 (d, 2H), 7.11 (d, 1H), 2.87 (q, 1H), 2.15 (d, 6H). ¹³CNMR (126 MHz, CDCl₃); δ 168.9, 138.1, 129.0, 124.4, 120.2, 33.8, 18.5. HRMS (ESI) for C₁₀H₁₃NO (m/z) [M+H]⁺ calcd: 164.0997, found: 164.0985.

2-methyl-*N*-phenylbenzamide (4n)

Yield 86%; yellow solid; m.p. 72-74°C; ¹HNMR (500 MHz, CDCl₃): δ 7.66 (s, 1H), 7.29 (t, 2H), 7.20 (s, 1H), 6.98 (d, 2H), 1.30 (s, 9H). ¹³C NMR (125 MHz, CDCl₃); δ 180.4, 136.7, 129.9, 124.5, 122.7, 40.2, 27.3. HRMS (ESI) for C₁₁H₁₅NO (m/z) [M+H]⁺ calcd: 178.1154, found: 178.1145.

N-(4-cynophenyl)-benzamide (5a)

Yield 93%; yellow solid; m.p. 169–171 °C; ¹H NMR (500 MHz, CDCl₃); δ 8.03 (s, 1H), 7.87 (t, 1H), 7.72 (d, 1H), 7.76–7.59 (m, 3H), 7.48 (d, 2H), 7.36 (t, 2H); ¹³C NMR (126 MHz, CDCl₃); δ 173.1, 142.1, 133.5, 133.9, 129.5, 129.1, 128.9, 127.2, 120.0; HRMS (ESI) for C₁₄H₁₀N₂O (m/z) [M+H]⁺ calcd: 223.0793, found: 223.0796.

N-cyclohexylbenzamide (5b)

Yield 92%; white solid; m.p. 153–155 °C; ¹H NMR (500 MHz, CDCl₃); δ 7.75 (d, 2H), 7.49 (t, 1H), 7.42 (t, 2H), 5.99 (s, 1H), 4.00– 3.95 (m, 1H), 2.02 (q, 2H), 1.76–1.64 (m, 3H), 1.46–1.39 (m, 2H), 1.27–1.20 (m, 2H); ¹³C NMR (126 MHz, CDCl₃): δ 166.9, 135.4, 131.6, 128.9, 127.2, 49.0, 35.6, 25.9, 25.2. HRMS (ESI) for C₁₃H₁₇NO (m/z) [M + H]⁺ calcd: 204.1310, found: 204.1307.

2-chlorophenyl-(morpholino)-methanone (5c)

Yield 94%; white solid; m.p. 73 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.35-7.34 (m, 1H), 7.30-7.27 (m, 1H), 3.84-3.80 (m, 1H), 3.74-3.69 (m, 3H), 3.65-3.61 (m, 1H), 3.55-3.51 (m, 1H), 3.25-3.21 (m, 1H), 3.17-3.15 (m, 1H), 3.14-3.13 (m, 1H). ¹³C NMR (126 MHz, CDCl₃); δ 167.1, 135.5, 130.5, 130.4, 129.8, 128.0, 127.5, 66.9, 66.9, 47.3, 42.2. HRMS (ESI) for C₁₁H₁₂ClNO₂ (m/z) [M + H]⁺ calcd:226.0557, found: 226.0530.

N-methyl-3-nitrobenzamide (5d)

Yield 94%; white solid; m.p. 178-180 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.60 (s, 1H), 8.35 (d, 1H), 8.18 (d, 1H), 7.65-7.62 (m, 1H), 6.73 (s, 1H), 2.94 (s, 3H); ¹³C NMR (126 MHz, CDCl₃); δ 168.6, 148.3, 137.6, 133.4, 129.0, 126.3, 123.7, 26.6. HRMS (ESI) for C₁₄H₁₃NO (m/z) [M + H]⁺ calcd: 212.0997, found: 212.0998.

morpholino(p-tolyl)-methanone (5e)

Yield 88%; white solid; m.p. 76 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.64 (d, 2H), 7.30 (d, 2H), 3.83 (t, 4H), 3.72 (d, 2H), 3.62 (t, 2H), 2.63 (s, 3H); ¹³C NMR (126 MHz, CDCl₃); δ 170.4, 140.6, 135.3, 128.6, 127.1, 66.9, 44.2, 21.3. HRMS (ESI) for C₁₂H₁₅NO₂ (m/z) [M + H]⁺ calcd: 206.1103, found: 206.1117.

4-methoxy-N-(4-nitrophenyl)-benzamide (5f)

Yield 86%; Yellow solid; m.p. 183-184 °C; ¹H NMR (500 MHz, CDCl₃); δ 8.25 (d, 1H), 8.09-8.05 (m, 2H), 7.87-7.83 (m, 2H), 7.00-6.97 (m, 2H), 6.61 (m, 1H), 4.39 (d, 1H), 3.90 (s, 3H); ¹³C NMR (126 MHz, CDCl₃); δ 164.8, 163.3, 152.6, 144.3, 133.0, 129.3, 126.5, 125.3, 119.5, 114.4, 114.3, 113.5, 55.7. HRMS (ESI) for C₁₄H₁₂N₂O₄ (m/z) [M + H]⁺ calcd: 273.0797, found: 273.0777.

4-chloro-N-(4-nitrophenyl)-benzamide (5g)

Yield 89%; Yellow solid; m.p 272-274 °C; ¹H NMR (500 MHz, DMSO-d₆) δ 11.10 (s, 1H), 8.41-8.39 (m, 2H), 8.31-8.29 (m, 2H), 8.23 (d, 2H), 8.08 (d, 2H); ¹³C NMR (126 MHz, DMSOd₆); δ 164.7, 149.4, 144.9, 142.9, 139.8, 129.5, 124.8, 123.6, 120.0. HRMS (ESI) for C₁₃H₉ClN₂O₃ (m/z) [M + H]⁺ calcd:277.0302, found: 277.0312.

4-fluro-*N*-(2-chlorophenyl)-benzamide (5h)

Yield 87%; white solid; m.p. 127 °C; ¹HNMR (500 MHz, DMSO-d₆): δ 9.43 (s, 1H), 7.85 (d, 2H), 7.56 (d, 1H), 7.44 (d, 1H), 7.36 (t, 1H), 7.29 (d, 2H), 7.17 (t, 1H); ¹³CNMR (126 MHz, DMSO-d₆); δ 165.1, 164.8, 162.9, 134.4, 130.8, 130.8, 129.9, 129.8, 128.3, 127.2, 126.7, 126.0, 115.3, 115.1. HRMS (ESI) for C₁₃H₉CIFNO (m/z) [M + H]⁺ calcd: 250.0357, found: 250.0334.

4-nitro-N-(4-methoxyphenyl)-benzamide (5i)

yield 95%; Green solid; m.p. 196-97 °C; ¹H NMR (500 MHz, CDCl₃); δ 8.35 (d, 2H), 8.05 (d, 2H), 7.80 (s, 1H), 7.56 (d, 2H), 6.95 (d, 2H), 3.84 (s, 3H); ¹³C NMR (126 MHz, CDCl₃); δ 167., 157.3, 150.0, 140.7, 130.3, 128.2, 124.0, 122.3, 114.4, 55.6. HRMS (ESI) for C₁₄H₁₂N₂O4 (m/z) [M + H]⁺ calcd: 273.0798, found: 273.0784.

N-methyl-4-nitrobenzamide (5j)

Yield 94%; White solid; m.p. 217-219 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.30 (d, 2H), 7.93 (d, 2H), 6.03 (s, 1H), 2.89 (s, 3H,); ¹³C NMR (126 MHz, CDCl₃); δ 168.7, 147.5, 140.4, 129.1, 123.8, 26.6. HRMS (ESI) for C₈H₈N₂O₃ (m/z) [M+H]⁺ calcd: 181.0535, found: 181.0558.

N-cyclohexyl-4-(trifluoromethyl)-benzamide (5k)

White solid; yield 94%; m.p. 182-183 °C; ¹H NMR (500 MHz,CDCl3) δ 7.87 (d, 2H), 7.68 (d, 2H), 6.06 (s, 1 H), 4.02 – 3.96 (m, 1H), 2.06 (d, 2H), 1.79 (dd, 2H), 1.42 (dd, 2H), 1.48 – 1.40 (m, 2H); ¹³C NMR (126 MHz, CDCl3) δ 165.2, 138.2, 133.0, 132.8, 127.2, 125.4 (q, *JCF* = 3.7 Hz), 124.67, 122.5, 48.9, 33.0, 25.4, 24.7; 19F NMR (471 MHz, CDCl3) δ -65.7. HRMS (ESI) for C₁₄H₁₆F₃NO (m/z) [M + H]⁺ calcd: 272.1184, found: 272.1164.

N-methyl-N-phenyl-4-(trifluoromethyl)-benzamide (5I)

Yield 90%; Yellow solid; m.p. 72-73 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.35–4.27 (m, 4H), 7.18 (t, 2H), 7.10 (t, 1H), 6.94 (d, 2H), 3.42 (s, 3H); ¹³C NMR (126 MHz, CDCl₃); δ 169.2, 144.3, 139.6, 131.5, 131.2, 129.5, 127.1, 124.9 (q, JCF = 3.7 Hz), 71.9, 38.4; HRMS (ESI) for C₁₅H₁₂F₃NO (m/z) [M + H]⁺ calcd: 280.0871, found: 280.0854.

N-benzylacetamide (6a)

Yield 90%; White solid; m.p. 61-62 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.25–7.18 (m, 5H), 6.26 (s, 1H), 4.30 (d, 2H), 1.90 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 170.2, 138.8, 128.7, 128.6, 127.8, 127.5, 43.7,

```
23.2; HRMS (ESI) for C_9H_{11}NO (m/z) [M + H]<sup>+</sup> calcd: 150.0841, found: 150.0834.
```

1-(piperidin-1-yl)-ethan-1-one (6b)

Yield 93%; colour less liquid; ¹H NMR (500 MHz, CDCl₃): δ 3.68 (t, 2H), 3.30 (t, 2H), 2.04 (s, 3H), 1.74–1.64 (m, 6H); ¹³C NMR (126 MHz, CDCl₃): δ 170.2, 43.0, 24.5, 23.6, 21.35; HRMS (ESI) for C₇H₁₃NO (m/z) [M + H]⁺ calcd: 128.0997, found: 128.0991.

1-morpholinoethan-1-one (6c)

Yield 92%; colour less liquid; ¹H NMR (500 MHz, CDCl₃): δ 3.79 (t, 4H), 3.73 (t, 2H), 3.50 (t, 2H), 2.07 (s, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 170.4, 66.9, 45.4, 21.5; HRMS (ESI) for C₆H₁₁NO₂ (m/z) [M + H]⁺ calcd:130.0790, found: 130.0781.

N-(2-methylphenyl)-acetamide (6d)

Yield 90%; white solid; m.p. 136 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.90 (d, 1H), 7.78 (s, 1H), 7.59 (t, 1H), 7.51 (t, 1H), 7.16 (d, 1H); 2.40 (s, 3H), 2.17 (s, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 170.5, 137.8, 132.7, 130.3, 127.5, 124.9, 122.3, 23.2, 17.7; HRMS (ESI) for C₉H₁₁NO (m/z) [M + H]⁺ calcd: 150.0841, found: 150.0849.

N-(4-methylphenyl)-acetamide (6e)

Yield 92%; liquid; ¹H NMR (500 MHz, CDCl₃): δ 7.89 (s, 1H), 7.46 (d, 2H), 7.20 (d, 2H), 2.34 (s, 3H), 2.11 (s, 3H); ¹³C NMR (126 MHz, CDCl₃):δ 170.9, 138.1, 133.0, 130.3, 119.0, 23.7, 22.1;

HRMS (ESI) for $C_9H_{11}NO$ (m/z) [M + H]⁺ calcd: 150.0841, found: 150.0838.

N-(2-bromophenyl)-acetamide (6f)

Yield 86%; white solid; m.p. 85–87°C; ¹H NMR (500 MHz, CDCl₃): δ 8.27 (d, 1H), 7.55 (s, 1H), 7.29 (d, 1H), 7.19 (t, 1H), 6.96 (t, 1H), 2.16 (s, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 168.4, 134.7, 129.1, 127.9, 124.8, 122.7, 121.8, 25.0; HRMS (ESI) for C₈H₈BrNO (m/z) [M + H]⁺ calcd: 213.9789, found: 213.9785

N-(3-bromophenyl)-acetamide (6g)

Yield 89%; white solid; m.p. 85 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.57 (s, 1H), 8.08 (s, 1H), 7.72 (d, 1H), 7.54 (d, 1H), 7.31 (t, 1H), 2.17 (s, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 168.9, 150.7, 138.0, 127.3, 124.3, 122.4, 120.1, 24.5; HRMS (ESI) for C₈H₈BrNO (m/z) [M+H]⁺ calcd: 213.9789, found: 213.9785.

N-benzylisobutyramide (6h)

Yield 89%; White solid; m.p. 91–92 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.32 (d, 2H), 7.27–7.26 (m, 3H), 5.82 (s, 1H), 4.44 (d 2H), 2.36–2.41 (m, 1H), 1.18 (d, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 177.0, 138.7, 128.9, 127.9, 127.6, 43.6, 35.9, 19.8; HRMS (ESI) for C₁₁H₁₅NO (m/z) [M+H]⁺ calcd: 178.1154, found: 178.1146

N-(2-chlorophenyl)-isobutyramide(6i)

Yield 85%; White solid; m.p. 92-94 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.42 (d, 1H), 7.73 (s, 1H), 7.39 (d, 1H), 7.29 (t, 1H), 7.06 (t, 1H), 2.65–2.59 (m, 1H), 1.30 (d, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 175.3, 134.8, 129.0, 127.9, 124.6, 122.6, 121.7, 37.2, 19.4; HRMS (ESI) for C₁₀H₁₂CINO (m/z) [M+H]⁺ calcd: 198.0607, found: 198.0626.

N-(2-chlorophenyl)-isobutyramide (6j)

Yield 86%; White solid; m.p. 92–94 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.75 (s, 1H), 7.42–7.37 (m, 4H), 2.65–2.59 (m, 1H), 1.32 (d, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 169.1, 138.2, 127.5, 124.5, 122.6, 120.3, 37.9, 19.6. HRMS (ESI) for C₁₀H₁₂ClNO (m/z) [M+H]⁺ calcd: 198.0607, found: 198.0604.

N-(4-hydroxyphenyl)-acetamide (6k)

Yield 90%; white solid; m.p. 168 °C; ¹H NMR (500 MHz, DMSOd₆): δ 9.65 (s, 1H), 9.14 (s, 1H), 7.35 – 7.33 (m, 2H), 6.69 – 6.67 (m, 2H), 1.99 (s, 3H); ¹³C NMR (126 MHz, DMSO-d₆): δ 167.5, 153.1, 131.0, 120.8, 114.9, 23.7; HRMS (ESI) for C₈H₉NO₂ (m/z) [M + H]⁺ calcd: 152.0633, found: 152.0641.

N-(4-ethoxyphenyl)-acetamide (6l)

Yield 93%; white solid; m.p. 135 °C; ¹H NMR (500 MHz, CDCl₃): δ 6.48 (d, 2H), 7.05 (d, 2H), 5.57 (s, 1H), (t, 2H), 3.60 (q, 2H), 2.09 (s, 3H), 1.41 (t, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 170.5, 156.6, 131.9, 121.9, 115.5, , 63.5, 23.3, 13.9; HRMS (ESI) for C₁₀H₁₃NO₂ (m/z) [M + H]⁺ calcd:180.0964, found: 180.0956.

N-(2-methylphenyl)-benzamide (8a)

Yield 90%; green solid; m.p. 145 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.92 (d, 3H), 7.78 (s, 1H), 7.58 (t, 1H), 7.51 (t, 2H), 7.26 (t, 2H), 7.15 (d, 1H) 2.35 (s, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 165.7, 135.8, 135.0, 131.6, 130.6, 129.5, 128.8, 127.1, 126.9, 125.4, 123.3, 17.8; HRMS (ESI) for C₁₄H₁₃NO (m/z) [M + H]⁺ calcd: 212.0997, found: 212.0977.

N-(2-bromophenyl)-benzamide (8b)

Yield 86%; white solid; m.p. 107 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.57 (d, 1H), 8.46 (s, 1H), 7.93 (d, 2H), 7.59 (t, 1H), 7.53 (t, 2H), 7.42 (t, 1H), 7.34 (t, 1H), 7.08 (d, 1H); ¹³C NMR (126 MHz, CDCl₃): δ 165.4, 134.9, 134.8, 132.3, 129.1, 129.0, 128.0, 127.2, 124.8, 123.2, 121.7; HRMS (ESI) for C₁₃H₁₀BrNO (m/z) [M + H]⁺ calcd: 275.9946, found: 275.9939.

N-(4-bromophenyl)-benzamide (8c)

Yield 88%; yellow solid; m.p. 205 °C; ¹H NMR (500 MHz, DMSOd₆): δ 9.00 (s, 1H), 7.94 (d, 2H), 7.80 (d, 2H), 7.60 (t, 1H), 7.53 (t, 2H), 7.42 (d, 2H), ¹³C NMR (126 MHz, DMSO-d₆): δ 165.7, 138.1, 134.7, 131.9, 128.7, 128.5, 127.8, 127.4, 122.0 HRMS (ESI) for C₁₃H₁₀BrNO (m/z) [M + H]⁺ calcd: 275.9946, found: 275.9955.

N-methyl-N-phenylbenzamide (8d)

Yield 90%; yellow oil;(¹H NMR (500 MHz, CDCl₃): δ 7.30 (d, 2H), 7.27–7.19 (m, 3H), 7.16 –7.10 (m, 3H), 7.04 (d, 2H), 3.49 (s, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 170.6, 144.8, 135.9, 129.5, 129.0,
128.6, 127.7, 126.8, 126.4, 38.3; HRMS(ESI) for C₁₄H₁₃NO (m/z)
[M + H]⁺ calcd: 212.0997, found: 212.0973.

N-benzyl-2-methylbenzamide (8e)

Yield 86%; white solid; m.p. 104 °C; ¹H NMR (500 MHz, DMSOd₆): δ 7.82 (d, 1H), 7.53 (t, 1H), 7.42 (t, 2H), 7.40–7.34 (m, 6H), 6.27 (s, 1H), 4.54 (d, 2H), 3.74 (s, 3H); ¹³C NMR (126 MHz, DMSO-d₆): δ 172.5, 138.9, 136.4, 132.2, 129.2, 129.1, 129.0, 128.0, 127.3, 124.9, 44.4, 20.6; HRMS (ESI) for C₁₅H₁₅NO (m/z) [M + H]⁺ calcd: 226.1153, found: 226.1168.

N-benzyl-2-chlorobenzamide (8f)

Yield 90%; White solid; m.p. 103–105 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.66 (d, 1H), 7.41–7.27 (m, 8H), 6.55 (s, 1H), 4.67 (d, 2H); ¹³C NMR (126 MHz, CDCl₃): δ 165.8, 152.6, 149.1, 144.9, 131.5, 129.2, 120.6, 99.1, 59.7, 53.6, 18.2, 14.7. HRMS (ESI) for C₁₄H₁₂CINO (m/z) [M + H]⁺ calcd: 246.0607, found: 246.0603.

N-benzyl-4-methoxybenzamide (8g)

Yield 88%; white solid; m.p. 125 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.01 (d, 1H), 7.69 (d, 2H), 7.27–7.18 (m, 4H), 6.84 (d, 2H), 6.29 (s, 1H), 4.55 (d, 2H), 3.76 (s, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 167.3, 162.4, 162.4, 138.6, 133.0, 129.0, 128.2, 127.8, 126.9, 114.4, 114.0, 55.6, 44.3; HRMS (ESI) for $C_{15}H_{15}NO_2 (m/z) [M + H]^+ calcd: 242.1103, found: 242.1093.$

4-chloro-N-methylbenzamide (8h)

Yield 94%; white solid; m.p. 153 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.84 (d, 2H), 7.47 (d, 2H), 6.00 (s, 1H), 2.87 (d, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 168.7, 136.8, 136.6, 129.1, 128.8, 26.0; HRMS (ESI) for C₈H₈CINO (m/z) [M+H]⁺ calcd:170.0294, found: 170.0284.

4. ¹H, ¹³C, ¹⁹F NMR and mass spectra of products

¹H and ¹³C NMR Spectra of *tert*-butyl benzyl(2-methylbenzoyl)-carbamate (1b)

¹H and ¹³C NMR Spectra of *tert*-butyl benzyl(3-methylbenzoyl)-carbamate (1c)

¹H and ¹³C NMR Spectra of *tert*-butyl benzyl(2-chlorobenzoyl)-carbamate (1e)

¹H and ¹³C NMR Spectra of *tert*-butyl benzyl(4-chlorobenzoyl)-carbamate (1f)

¹H and ¹³C NMR Spectra of *tert*-butyl benzyl(4-nitrobenzoyl)-carbamate (1i)

¹H, ¹³C and ¹⁹ F NMR Spectra of *tert*-butyl benzyl(4-(trifluoromethyl)benzoyl)-carbamate

(1j)

¹H and ¹³C NMR Spectra of *tert*-butyl (4-fluorobenzoyl) (phenyl)-carbamate (1l)

¹H and ¹³C NMR Spectra of *tert*-butyl benzoyl(o-tolyl)-carbamate (1m)

¹H and ¹³C NMR Spectra of *tert*-butyl benzoyl(2-chlorophenyl)-carbamate (1n)

¹H and ¹³C NMR Spectra of *tert*-butyl acetyl(phenyl)-carbamate (10)

¹H and ¹³C NMR Spectra of *tert*-butyl acetyl(4-bromophenyl)-carbamate (1p)

¹H and ¹³C NMR Spectra of *tert*-butyl acetyl(4-fluorophenyl)-carbamate (1q)

¹H and ¹³C NMR Spectra of *tert*-butyl isobutyryl(phenyl)-carbamate (1r)

¹H and ¹³C NMR Spectra of *tert*-butyl phenyl(pivaloyl)-carbamate (1s)

¹H and ¹³C NMR Spectra of *tert*-butyl benzoyl(phenyl)-carbamate (1q)

¹H and ¹³C NMR Spectra of *tert*-butyl benzoyl(phenyl)-carbamate (1r)

¹H and ¹³C NMR Spectra of *tert*-butyl benzoyl(phenyl)-carbamate (1s)

¹H and ¹³C NMR Spectra of morpholino(phenyl)-methanone (3a)

¹H and ¹³C NMR Spectra of *N*-(2-methoxyphenyl)-benzamide (3c)

¹H and ¹³C NMR Spectra of *N*-(3-methoxyphenyl)-benzamide (3d)

¹H and ¹³C NMR Spectra of *N*-(4-methoxyphenyl)-benzamide (3e)

¹H and ¹³C NMR Spectra of *N*-(2-nitrophenyl)-benzamide (3f)

¹H and ¹³C NMR Spectra of *N*-(3-nitrophenyl)-benzamide (3g)

¹H and ¹³C NMR Spectra of *N*-(4-nitrophenyl)-benzamide (3h)

¹H and ¹³C NMR Spectra of piperazine-1,4-diylbis(phenylmethanone) (3k)

¹H and ¹³C NMR Spectra of *N*-methylbenzamide (3I)

¹H and ¹³C NMR Spectra of *N*-butylbenzamide (3m)

¹H and ¹³C NMR Spectra of *N*,*N*-dioctylbenzamide (3n)

¹H and ¹³C NMR Spectra of *N*-(tert-butyl)-benzamide (30)

¹H and ¹³C NMR Spectra of *N*-(3s,5s,7s)-adamantan-1-yl)-benzamide (3p)

S71

¹H and ¹³C NMR Spectra of *N*-(2-ethyl-6-methylphenyl)-benzamide (3r)

¹H and ¹³C NMR Spectra of *N*-(3-hydroxypyridin-2-yl)-benzamide (3s)

¹H and ¹³C NMR Spectra of 2-methyl-*N*-phenylbenzamide (4a)

¹H and ¹³C NMR Spectra of 3-methyl-*N*-phenylbenzamide (4b)

¹H and ¹³C NMR Spectra of 2-chloro-*N*-phenylbenzamide (4d)

¹H and ¹³C NMR Spectra of 4-chloro-*N*-phenylbenzamide (4e)

100 90 f1 (ppm) **S80** 80 70 60 50

40

30

20 10

200

190 180 170 160 150 140 130 120 110

-10

0

¹H and ¹³C NMR Spectra of 2-nitro-*N*-phenylbenzamide (4f)

¹H and ¹³C NMR Spectra of *N*-phenyl-4-(trifluoromethyl)benzamide (4i)

¹H and ¹³C NMR Spectra of 4-fluoro-*N*-phenylbenzamide (4k)

¹H and ¹³C NMR Spectra of *N*-phenylacetamide (4I)

¹H and ¹³C NMR Spectra of *N*-phenylisobutyramide (4m)

¹H and ¹³C NMR Spectra of *N*-phenylpivalamide (4n)

¹H and ¹³C NMR Spectra of *N*-(4-cynophenyl)benzamide (5a)

¹H and ¹³C NMR Spectra of *N*-cyclohexylbenzamide (5b)

f1 (ppm) . -1

-2

-3

¹H and ¹³C NMR Spectra of (2-chlorophenyl)(morpholino)methanone (5c)

¹H and ¹³C NMR Spectra of *N*-methyl-3-nitrobenzamide (5d)

¹H and ¹³C NMR Spectra of morpholino(p-tolyl)methanone (5e)

¹H and ¹³C NMR Spectra of 4-methoxy-*N*-(4-nitrophenyl)-benzamide (5f)

¹H and ¹³C NMR Spectra of 4-chloro-*N*-(4-nitrophenyl)-benzamide (5g)

¹H and ¹³C NMR Spectra of 4-fluro-*N*-(2-chlorophenyl)-benzamide (5h)

¹H and ¹³C NMR Spectra of 4-nitro-*N*-(4-methoxyphenyl)-benzamide (5i)

¹H and ¹³C NMR Spectra of *N*-methyl-4-nitrobenzamide (5j)

¹H and ¹³C NMR Spectra of *N*-cyclohexyl-4-(trifluoromethyl)-benzamide (5k)

S100

¹H and ¹³C NMR Spectra of *N*-methyl-*N*-phenyl-4-(trifluoromethyl)-benzamide (5I)

¹H and ¹³C NMR Spectra of ¹H and ¹³C NMR Spectra of *N*-benzylacetamide (6a)

¹H and ¹³C NMR Spectra of 1-(piperidin-1-yl)-ethan-1-one (6b)

¹H and ¹³C NMR Spectra of 1-morpholinoethan-1-one (6c)

¹H and ¹³C NMR Spectra of *N*-(2-methylphenyl)-acetamide (6d)

¹H and ¹³C NMR Spectra of *N*-(4-methylphenyl)-acetamide (6e)

¹H and ¹³C NMR Spectra of *N*-(2-bromophenyl)-acetamide (6f)

¹H and ¹³C NMR Spectra of *N*-(3-bromophenyl)-acetamide (6g)

¹H and ¹³C NMR Spectra of *N*-benzylisobutyramid*e* (6h)

¹H and ¹³C NMR Spectra of *N*-(2-chlorophenyl)-isobutyramide (6i)

¹H and ¹³C NMR Spectra of *N*-(4-chlorophenyl)-isobutyramide (6j)

¹H and ¹³C NMR Spectra of *N*-(4-hydroxyphenyl)-acetamide (6k)

¹H and ¹³C NMR Spectra of *N*-(4-ethoxyphenyl)-acetamide (6l)

¹H and ¹³C NMR Spectra of *N*-(2-methylphenyl)-benzamide (8a)

¹H and ¹³C NMR Spectra of *N*-(2-bromophenyl)-benzamide (8b)

¹H and ¹³C NMR Spectra of *N*-(4-bromophenyl)-benzamide (8c)

¹H and ¹³C NMR Spectra of *N*-methyl-*N*-phenylbenzamide (8d)

¹H and ¹³C NMR Spectra of *N*-benzyl-2-methylbenzamide (8e)

¹H and ¹³C NMR Spectra of *N*-benzyl-2-chlorobenzamide (8f)

¹H and ¹³C NMR Spectra of *N*-benzyl-4-methoxybenzamide (8g)

¹H and ¹³C NMR Spectra of 4-chloro-*N*-methylbenzamide (8h)

5. References

- 1 C. Singh, K. Singh, and P. C. Pandey, *Russian Journal of Electrochemistry*, 2023, **59**, 604–615.
- 2 R. M. D. Figueiredo, J. S. Suppo, and J. M. Campagne, *Chemical Reviews*, 2016, **116**, 12029–12122.
- 3 Y. Liu, S. Shi, M. Achtenhagen, R. Liu, and M. Szostak, Organic letters, 2017, **19**, 1614– 1617.
- 4. T. Zhou, G. Li, S. P. Nolan and M. Szostak, *Organic letters*, 2019, **21**, 3304–3309.
- 5. Y. Guo, R. Y. Wang, J. X. Kang, Y. N. Ma, C. Q. Xu, J. Li and X. Chen, *Nature communications*, 2021, **12**, 5964–5964.
- 6. S. Singh and J. Kandasamy, Asian Journal of Organic Chemistry, 2022, **11**, e202200416–e202200420.
- 7. S. Singh and J. Kandasamy, *Asian Journal of Organic Chemistry*, 2023, **12**, e202300115–e202300120.