Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Imformation

Table of contents	Page
1.General information	S 1
2.General procedure for synthesis of compound 2a	S2
3. HRMS results of radical trapping experiment and radical clock	S3
experiment	
4.Spectroscopic data	S4
5.References	S12
6.NMR spectra	S13

1. General information

¹H NMR spectra were recorded on a Bruker AVANCE III 400 spectrometer at room temperature. Chemical shifts (ppm) were referenced to tetramethylsilane (TMS, $\delta = 0$ ppm) in CDCl₃ as an internal standard. Data for ¹H NMR were recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet or unresolved, br = broad singlet, coupling constant (s) in Hz, integration). ¹³C NMR spectra and ¹⁹F NMR spectra were obtained by the same NMR spectrometer and were calibrated with CDCl₃ (δ = 77.00 ppm). Data for ¹³C NMR were reported in terms of chemical shift and multiplicity where appropriate. Melting points were measured on SGW X-4 melting point apparatus and uncorrected. Unless otherwise noted, all reactions were carried out in quartz tubes under argon atmosphere. Anhydrous solvents were from Innochem and dried by standard procedures. HBpin was purchased from J&K Scientific Ltd. DCE was extracted from P₂O₅ by standard method. All other commercially available reagents were from Innochem Chemicals and used as received. Flash chromatography was carried out with silica gel (200-300 mesh). Analytical TLC was performed with silica gel GF254 plates, and the products were visualized by UV detection. 1,4,2-Dioxazol-5-ones derivatives 1 were prepared according to the literature. Due to the inclusion of product points by by-product points during TLC monitoring, it is impossible to separate and calculate the separation yield by column chromatography. Unless otherwise stated, all yields are NMR yields. The NMR spectra were obtained by recrystallization of the crude products by using n-hexane + ethyl acetate system after a rough flash chromatography.

2. General procedure for synthesis of compound 2a

To a 25 mL flame-dried quartz tube was charged with 1a (0.2 mmol, 1.0 equiv.), HBpin(0.4 mmol, 2.0 equiv.), FeBr₃(0.02 mmol, 10 mol%) and DCE (3 mL). The mixture was evacuated and backfilled with argon three times. Then the mixture was stirred for 16h under 18 W blue LED irradiation at room temperature. After completion, the mixture was quenched with water (3 mL), and extracted with dichloromethane (10 mL \times 3). The combined organic layers were dried over Na₂SO₄, and concentrated under reduced pressure. The crude mixture was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate =5:1 to 1:1) affording the desired products 2a.

3. HRMS results of radical trapping experiment and radical clock experiment

6a HRMS (ESI-TOF) m/z [M +H⁺] calculated for $C_{21}H_{17}NO$: 300.1382, found: 300.1375.

6b HRMS (ESI-TOF) m/z [M +H⁺] calculated for $C_{21}H_{19}NO$: 302.1539, found: 302.1530.

7a HRMS (ESI-TOF) m/z [M +H⁺] calculated for $C_{37}H_{51}NO_3$: 558.3942, found: 558.3931.

7b HRMS (ESI-TOF) m/z [M $+H^+$] calculated for C₂₂H₂₉NO₂: 340.2271, found: 340.2263.

8a HRMS (ESI-TOF) m/z [M $+H^+$] calculated for C₁₈H₁₇NO: 264.1383, found: 264.1377.

8b HRMS (ESI-TOF) m/z [M -H⁺] calculated for $C_{25}H_{22}N_2O_2$: 383.1754, found: 383.1742.

4. Spectroscopic data

 NH_2

4-fluorobenzamide (2aa)

Colorless soild; $R_f=0.75$ (petroleum ether : EtOAc = 1:1); 85% yield; mp:150-153 °C.

¹H NMR (CDCl₃, 500 MHz) δ 7.85-7.81 (m, 2H), 7.15-7.10 (m, 2H), 5.96 (s, 2H). ¹³C NMR (CDCl₃, 126 MHz) δ 168.21, 165.07 (d, ${}^{1}J_{CF}$ = 250.0 Hz), 129.76 (d, ${}^{3}J_{CF}$ = 7.5 Hz), 129.54 (d, ${}^{4}J_{CF}$ = 2.5 Hz), 115.69 (d, ${}^{2}J_{CF}$ = 21.2 Hz). ¹⁹F NMR (DMSO-*d6*, 376 MHz) δ -109.63.

4-chlorobenzamide (2ab)

Colorless soild; $R_f=0.60$ (petroleum ether : EtOAc = 1:1); 93% yield; mp:168-171 °C.

¹H NMR (CDCl₃, 500 MHz) δ 7.75 (d, *J* = 8.5 Hz, 2H), 7.43 (d, *J* = 8.5 Hz, 2H), 5.96 (s, 2H). ¹³C NMR (CDCl₃, 126 MHz) δ 168.22, 138.37, 131.72, 128.92, 128.79.

4-bromobenzamide (2ac)

Colorless soild; $R_f=0.70$ (petroleum ether : EtOAc = 1:1); 73% yield; mp:182-185°C.

¹H NMR (CDCl₃, 500 MHz) δ 7.75 (dd, *J* = 6.5, 2.0 Hz, 0.45H), 7.70-7.67 (m, 1.55H), 7.61-7.59 (m, 1.55H), 7.43 (dd, *J* = 6.6, 2.0 Hz, 0.45H), 5.99-5.70 (m, 2H). ¹³C NMR (CDCl₃, 126 MHz) δ 168.15, 132.16, 131.92, 128.96, 128.93, 128.80, 126.84.

4-iodobenzamide (2ad)

Colorless soild; $R_f=0.80$ (petroleum ether : EtOAc = 1:1); 84% yield; mp:225-228°C.

¹**H NMR (CDCl₃, 500 MHz)** δ 7.81 (d, *J* = 8.5 Hz, 2H), 7.53 (d, *J* = 8.5 Hz, 2H), 5.97-5.57 (m, 2H). ¹³**C NMR (CDCl₃, 126 MHz)** δ 168.31, 137.91, 132.72, 128.92, 99.14.

4-nitrobenzamide (2ae)

Yellow soild; $R_f=0.10$ (petroleum ether : EtOAc = 1:1); 89% yield; mp:210-215 °C. ¹H

NMR (CDCl₃, 500 MHz) δ 8.32 (d, *J* = 8.7 Hz, 2H), 7.98 (d, *J* = 8.7 Hz, 2H), 6.09-5.68 (m, 2H). ¹³C **NMR (DMSO-***d***6**, 126 MHz) δ 166.16, 149.02, 139.96, 128.87, 123.38.

4-(trifluoromethyl)benzamide (2af)

Colorless soild; $R_f=0.50$ (petroleum ether : EtOAc = 1:1); 86% yield; mp:190-193 °C.

¹H NMR (CDCl₃, 500 MHz) δ 7.93 (d, J = 7.9 Hz, 2H), 7.73 (d, J = 7.8 Hz, 2H), 6.09-5.72 (m, 2H). ¹³C NMR (CDCl₃, 126 MHz) δ 167.90, 136.59, 133.79 (q, ² J_{CF3} = 32.6 Hz), 127.81, 125.73 (q, ³ J_{CF3} = 3.7 Hz), 123.59 (q, ¹ J_{CF3} = 271.1 Hz). ¹⁹F NMR (DMSO-*d*6, 376 MHz) δ -61.3, -73.5.

4-methylbenzamide (2ag)

Colorless soild; $R_f=0.25$ (petroleum ether : EtOAc = 1:1); 84% yield; mp:160-163 °C.

¹**H NMR (CDCl₃, 500 MHz)** δ 7.71 (d, *J* = 8.1 Hz, 2H), 7.24 (d, *J* = 7.9 Hz, 2H), 5.98 (s, 2H), 2.40 (s, 3H). ¹³**C NMR (CDCl₃, 126 MHz)** δ 169.41, 142.53, 130.51, 129.27, 127.38, 21.46.

4-(tert-butyl)benzamide (2ah)

Colorless soild; $R_f=0.20$ (petroleum ether : EtOAc = 1:1); 80% yield; mp:174-178°C.

¹H NMR (CDCl₃, 500 MHz) δ 7.75 (d, *J* = 8.4 Hz, 2H), 7.46 (d, *J* = 8.4 Hz, 2H), 6.06-5.82 (m, 2H), 1.34 (s, 9H). ¹³C NMR (CDCl₃, 126 MHz) δ 169.29, 155.60, 130.47, 127.23, 125.56, 34.98, 31.14.

4-methoxybenzamide (2ai)

Colorless soild; $R_f=0.35$ (petroleum ether : EtOAc = 1:1); 88% yield; mp:166-169°C.

¹**H NMR (CDCl₃, 500 MHz)** δ 7.78 (d, *J* = 8.8 Hz, 2H), 6.94 (d, *J* = 9.0 Hz, 2H), 5.87-5.59 (m, 2H), 3.86 (s, 3H). ¹³**C NMR (CDCl₃, 126 MHz)** δ 168.80, 162.65, 129.28, 125.56, 113.83, 55.43.

3-methylbenzamide (2aj)

Colorless soild; $R_f=0.45$ (petroleum ether : EtOAc = 1:1); 72% yield; mp:100-102°C.

¹H NMR (CDCl₃, 500 MHz) δ 7.65 (s, 1H), 7.58 (s, 1H), 7.34-7.33 (m, 2H), 6.06-5.76 (m, 2H), 2.41 (s, 3H). ¹³C NMR (CDCl₃, 126 MHz) δ 169.51, 138.53, 133.31, 132.75, 128.49, 128.13, 124.28, 21.32.

3-methoxybenzamide (2ak)

Colorless soild; $R_f=0.80$ (petroleum ether : EtOAc = 1:1); 75% yield; mp:134-135°C.

¹H NMR (CDCl₃, **500** MHz) δ 7.41-7.40 (m, 1H), 7.36-7.32 (m, 2H), 7.07 (dt, *J* = 7.2, 2.3 Hz, 1H), 6.10-5.92 (m, 2H), 3.85 (s, 1H). ¹³C NMR (CDCl₃, 126 MHz) δ 169.22, 159.88, 134.83, 129.60, 119.16, 118.27, 112.61, 55.45.

3-fluorobenzamide (2al)

Colorless soild; $R_f=0.75$ (petroleum ether : EtOAc = 1:1); 82% yield; mp:130-131°C.

¹H NMR (CDCl₃, 500 MHz) δ 7.58-7.53 (m, 2H), 7.43 (q, J = 6.8 Hz, 1H), 7.23 (t, J = 8.2 Hz, 1H), 6.11 (s, 2H). ¹³C NMR (CDCl₃, 126 MHz) δ 168.12, 162.77 (d, ¹ $J_{CF} = 246.5$ Hz), 135.67 (d, ⁵ $J_{CF} = 7.0$ Hz), 130.31 (d, ⁴ $J_{CF} = 7.6$ Hz), 122.80 (d, ⁶ $J_{CF} = 2.9$ Hz), 119.02 (d, ³ $J_{CF} = 21.1$ Hz), 114.74 (d, ² $J_{CF} = 22.8$ Hz). ¹⁹F NMR (DMSO-*d6*, 376 MHz) δ -113.0.

3-chlorobenzamide (2am)

Colorless soild; $R_f=0.70$ (petroleum ether : EtOAc = 1:1); 74% yield; mp:135-137°C.

¹**H NMR (CDCl₃, 500 MHz)** δ 7.81 (s, 1H), 7.68 (d, *J* = 7.7 Hz, 1H), 7.51 (d, *J* = 7.9 Hz, 1H), 7.40 (t, *J* = 7.9 Hz, 1H), 6.04-5.82 (m, 2H). ¹³**C NMR (CDCl₃, 126 MHz)** δ 167.87, 135.13, 134.88, 132.05, 129.96, 127.74, 125.39.

3-bromobenzamide (2an)

Colorless soild; $R_f=0.80$ (petroleum ether : EtOAc = 1:1); 70% yield; mp:155-156°C.

¹H NMR (DMSO-*d*6, 500 MHz) δ 8.08 (s, 1H), 8.05 (t, *J* = 1.7 Hz, 1H), 7.88-7.87 (m, 1H), 7.72 (dt, *J* = 8.0, 0.9 Hz, 1H), 7.49 (s, 1H), 7.42 (t, *J* = 7.9 Hz, 1H). ¹³C NMR (DMSO-*d*6, 126 MHz) δ 166.26, 136.45, 133.88, 130.43, 130.12, 126.48, 121.56.

2-methylbenzamide (2ao)

Colorless soild; $R_f=0.85$ (petroleum ether : EtOAc = 1:1); 60% yield; mp:139-141 °C.

¹H NMR (CDCl₃, 500 MHz) δ 7.47-7.45 (m, 1H), 7.34 (td, *J* = 7.5, 1.5 Hz, 1H), 7.25-7.20 (m, 2H), 5.69-5.63 (m, 2H), 2.51 (s, 3H). ¹³C NMR (DMSO-*d6*, 126 MHz) δ 170.94, 137.02, 135.02, 130.36, 129.06, 126.92, 125.85, 19.48.

2-fluorobenzamide (2ap)

Colorless soild; $R_f=0.85$ (petroleum ether : EtOAc = 1:1); 70% yield; mp:115-116°C.

¹H NMR (DMSO-*d*6, 500 MHz) δ 7.65 (td, J = 7.6, 1.7 Hz, 2H), 7.61 (s, 1H), 7.54-7.49 (m, 1H), 7.28-7.25 (m, 2H). ¹³C NMR (DMSO-*d*6, 126 MHz) δ 165.16, 159.24 (d, ${}^{1}J_{CF}$ = 247.5 Hz), 132.39 (d, ${}^{4}J_{CF}$ = 8.3 Hz), 130.16 (d, ${}^{6}J_{CF}$ = 2.8 Hz), 124.33 (d, ${}^{5}J_{CF}$ = 3.1 Hz), 123.81 (d, ${}^{3}J_{CF}$ = 14.2 Hz), 116.02 (d, ${}^{2}J_{CF}$ = 22.3 Hz). ¹⁹F NMR (DMSO-*d*6, 376 MHz) δ -113.78.

2-chlorobenzamide (2aq)

Colorless soild; $R_f=0.70$ (petroleum ether : EtOAc = 1:1); 68% yield; mp:138-139°C.

¹H NMR (DMSO-*d*6, 500 MHz) δ 7.84 (s, 1H), 7.55 (s, 1H), 7.48-7.46 (m, 1H), 7.44-7.40 (m, 2H), 7.38-7.35 (m, 1H). ¹³C NMR (DMSO-*d*6, 126 MHz) δ 168.05, 137.09, 130.45, 129.56, 129.52, 128.59, 126.92.

2-(trifluoromethyl)benzamide (2ar)

Colorless soild; $R_f=0.65$ (petroleum ether : EtOAc = 1:1); 75% yield; mp:156-158°C.

¹H NMR (CDCl₃, 500 MHz) δ 7.71 (d, J = 8.0 Hz,1H), 7.61 (s,1H), 7.60(s, 1H), 7.58-7.54 (m,1H), 6.11 (s, 1H), 5.82 (s, 1H). ¹³C NMR (CDCl₃, 126 MHz) δ 169.75, 134.98, 132.06, 130.12, 128.61, 127.23 (q, ${}^{2}J_{CF3} = 32.0$ Hz), 126.39 (q, ${}^{3}J_{CF3} = 4.6$ Hz), 123.53 (q, ${}^{1}J_{CF3} = 272.2$ Hz). ¹⁹F NMR (DMSO-*d*6, 376 MHz) δ -57.86.

thiophene-2-carboxamide (2as)

Colorless soild; $R_f=0.80$ (petroleum ether : EtOAc = 1:1); 85% yield; mp:185-188°C.

¹H NMR (CDCl₃, 500 MHz) δ 7.54 (s, 2H), 7.10 (d, *J* = 3.4 Hz, 1H), 5.69 (s, 2H). ¹³C NMR (CDCl₃, 126 MHz) δ 163.52, 137.77, 130.89, 129.29, 127.77.

2-naphthamide (2at)

Colorless soild; $R_f=0.80$ (petroleum ether : EtOAc = 1:1); 85% yield; mp:188-189°C.

¹H NMR (CDCl₃, 500 MHz) δ 8.50 (s, 1H), 8.15 (s, 1H), 8.01-7.96 (m, 4H), 7.62-7.56 (m, 2H), 7.44 (s, 1H). ¹³C NMR (CDCl₃, 126 MHz) δ 167.89, 134.10, 132.10, 131.59, 128.79, 127.75, 127.67, 127.51, 127.48, 126.56, 124.34.

4-phenylbutanamide (4aa)

Colorless soild; $R_f=0.70$ (petroleum ether : EtOAc = 1:1); 52% yield; mp:104-106°C.

¹H NMR (DMSO-*d6*, 500 MHz) δ 7.30-7.27 (m, 2H), 7.21-7.18 (m, 2H), 5.39-5.38 (m, 2H), 2.68 (t, *J* = 7.5 Hz, 2H), 2.22 (t, *J* = 7.4 Hz, 2H), 2.02-1.96 (m, 2H). ¹³C NMR (DMSO-*d6*, 126 MHz) δ 175.05, 141.36, 128.47, 128.39, 125.99, 35.07, 34.94, 26.81.

4-(4-fluorophenyl)butanamide (4ab)

Colorless soild; $R_f=0.70$ (petroleum ether : EtOAc = 1:1); 56% yield; mp:116-119°C.

¹H NMR (DMSO-*d*6, 500 MHz) δ 7.25-7.19 (m, 3H), 7.11-7.06 (m, 2H), 6.71 (s, 1H), 2.54 (t, J = 7.6 Hz, 2H), 2.04 (t, J = 7.3 Hz, 2H), 1.79-1.73 (m, 2H). ¹³C NMR (DMSO-*d*6, 126 MHz) δ 173.89, 160.55 (d, ^{*1*} J_{CF} = 241.3 Hz), 137.89 (d, ^{*4*} J_{CF} = 3.2 Hz), 129.96 (d, ³ J_{CF} = 7.8 Hz), 114.85 (d, ² J_{CF} = 20.7 Hz), 34.36, 33.73, 26.87. ¹⁹F NMR (DMSO-*d*6, 376 MHz) δ -117.74.

4-(4-chlorophenyl)butanamide (4ac)

Colorless soild; $R_f=0.85$ (petroleum ether : EtOAc = 1:1); 57% yield; mp:111-113 °C.

¹H NMR (DMSO-*d*6, 500 MHz) δ 7.33-7.31 (m, 2H), 7.24 (s, 1H), 7.22-7.20 (m, 2H), 6.70 (s, 1H), 2.55 (t, *J* = 7.6 Hz, 2H), 2.04 (t, *J* = 7.4 Hz, 2H), 1.79-1.73 (m, 2H). ¹³C NMR (DMSO-*d*6, 126 MHz) δ 173.86, 140.79, 130.28, 130.13, 128.11, 34.30, 33.85, 26.59.

4-(4-bromophenyl)butanamide (4ad)

Colorless soild; $R_f=0.70$ (petroleum ether : EtOAc = 1:1); 60% yield; mp:153-156°C.

¹**H NMR (DMSO-***d***6, 500 MHz)** δ 7.45 (d, *J* = 8.4 Hz, 2H), 7.26 (s, 1H), 7.15 (d, *J* = 8.3 Hz, 2H), 6.73 (s, 1H), 2.53 (t, *J* = 7.6 Hz, 2H), 2.04 (t, *J* = 7.4 Hz, 2H), 1.79-1.73 (m, 2H). ¹³**C NMR (DMSO-***d***6, 126 MHz)** δ 173.93, 141.23, 131.07, 130.59, 118.73, 34.33, 33.93, 26.57.

3-(4-(trifluoromethyl)phenyl)propenamide (4ae)

Colorless soild; $R_f=0.70$ (petroleum ether : EtOAc = 1:1); 55% yield; mp:188-189°C.

¹H NMR (DMSO-*d*6, 500 MHz) δ 7.61 (d, *J* = 8.1 Hz, 2H), 7.61 (d, *J* = 8.0 Hz, 2H), 7.33 (s, 1H), 6.81 (s, 1H), 2.89 (t, *J* = 7.6 Hz, 2H), 2.40 (t, *J* = 7.8 Hz, 2H). ¹³C NMR (DMSO-*d*6, 126 MHz) δ 173.10, 146.46, 129.04, 126.69 (q, ²*J*_{CF3} = 31.6 Hz), 125.01

(q, ${}^{3}J_{CF3}$ = 3.7 Hz), 124.43 (q, ${}^{1}J_{CF3}$ = 272.0 Hz), 36.05, 30.56. ¹⁹F NMR (DMSO-*d6*, **376 MHz**) δ -60.83.

4-(4-methoxyphenyl)butanamide (4af)

Colorless soild; $R_f=0.70$ (petroleum ether : EtOAc = 1:1); 65% yield; mp:125-126°C.

¹H NMR (CDCl₃, 500 MHz) δ 7.10 (d, J = 8.5 Hz, 2H), 6.83 (d, J = 8.6 Hz, 2H), 5.31 (s, 2H), 2.62 (t, J = 7.4 Hz, 2H), 2.21 (t, J = 7.4 Hz, 2H), 1.98-1.92 (m, 2H). ¹³C NMR (CDCl₃, 126 MHz) δ 174.97, 157.95, 129.38, 114.31, 113.86, 55.26, 34.89, 34.17, 27.06.

4-(p-tolyl)butanamide (4ag)

Colorless soild; $R_f=0.60$ (petroleum ether : EtOAc = 1:1); 59% yield; mp:133-134°C.

¹**H NMR (DMSO-***d***6**, **500 MHz**) δ 7.24 (s, 1H), 7.09-7.05 (m, 4H), 6.70 (s, 1H), 2.51 (t, *J* = 7.3 Hz, 2H), 2.26 (s, 3H), 2.04 (t, *J* = 7.4 Hz, 2H), 1.78-1.72 (m, 2H). ¹³**C NMR (DMSO-***d***6**, **126 MHz**) δ 173.99, 138.65, 134.51, 128.79, 128.13, 34.48, 34.23, 26.90, 20.56.

4-([1,1'-biphenyl]-4-yl)butanamide (4ah)

Colorless soild; $R_f=0.45$ (petroleum ether : EtOAc = 1:1); 54% yield; mp:204-208°C.

¹H NMR (DMSO-*d*6, 500 MHz) δ 7.66-7.63 (m, 2.5H), 7.58 (d, *J* = 7.9 Hz, 2H), 7.45 (t, *J* = 7.6 Hz, 2H), 7.34 (t, *J* = 7.5 Hz, 1H), 7.28 (d, *J* = 7.9 Hz, 2.5H), 6.74 (s, 1H), 2.61 (t, *J* = 7.6 Hz, 2H), 2.10 (t, *J* = 7.4 Hz, 2H), 1.85-1.79 (m, 2H). ¹³C NMR (DMSO-*d*6, 126 MHz) δ 173.96, 141.09, 140.07, 137.65, 128.88, 128.84, 127.10, 126.53, 126.42, 34.50, 34.24, 26.72.

5. Reference

1. Guo, Y.; Wang, R. Y.; Kang, J. X.; Ma, Y. N.; Xu, C. Q.; Li, J.; Chen, X., Efficient synthesis of primary and secondary amides via reacting esters with alkali metal amidoboranes. *Nat Commun* **2021**, *12* (1), 5964.

2. Liu, C. F.; Luo, X.; Wang, H.; Koh, M. J., Catalytic Regioselective Olefin Hydroarylation(alkenylation) by Sequential Carbonickelation-Hydride Transfer. *J Am Chem Soc* **2021**, *143* (25), 9498-9506.

3. Wan, Y.; Ramírez, E.; Ford, A.; Bustamante, V.; Li, G., Fe-Catalyzed C(sp3)–H Diversification toward γ-Functionalized Amides via Iron Nitrenoid: Mechanistic Insights and Applications. *ACS Catalysis* **2023**, *13* (21), 14023-14030.

6. NMR spectra

2aa, ¹H NMR, 500 M, CDCl₃

2aa, ¹³C NMR, 126 M, CDCl₃

2ab, ¹³C NMR, 126 M, CDCl₃

2ac, ¹H NMR, 500 M, CDCl₃

2ac, ¹³C NMR, 126 M, CDCl₃

2ad, ¹³C NMR, 126 M, CDCl₃

2ae, ¹³C NMR, 126 M, DMSO-d6

2af, ¹³C NMR, 126 M, CDCl₃

2ag, ¹³C NMR, 126 M, CDCl₃

2ai, ¹³C NMR, 126 M, CDCl₃

2aj, ¹³C NMR, 126 M, CDCl₃

2ak, ¹H NMR, 500 M, CDCl₃

2ak, ¹³C NMR, 126 M, CDCl₃

2al, ¹³C NMR, 126 M, CDCl₃

2am, ¹³C NMR, 126 M, CDCl₃

2an, ¹H NMR, 500 M, DMSO-d6

2an, ¹³C NMR, 126 M, DMSO-d6

2ao, ¹H NMR, 500 M, CDCl₃

2ao, ¹³C NMR, 126 M, DMSO-*d6*

2ap, ¹H NMR, 500 M, DMSO-d6

2ap, ¹³C NMR, 126 M, DMSO-*d6*

2aq, ¹H NMR, 500 M, DMSO-d6

2aq, ¹³C NMR, 126 M, DMSO-*d6*

2ar, ¹³C NMR, 126 M, CDCl₃

2as, ¹³C NMR, 126 M, CDCl₃

2at, ¹³C NMR, 126 M, CDCl₃

4aa, ¹³C NMR, 126 M, DMSO-*d6*

4ab, ¹³C NMR, 126 M, DMSO-*d6*

4ac, ¹³C NMR, 126 M, DMSO-*d6*

4ad, ¹³C NMR, 126 M, DMSO-d6

4ae, ¹³C NMR, 126 M, DMSO-d6

4af, ¹³C NMR, 126 M, CDCl₃

4ag, ¹³C NMR, 126 M, DMSO-*d6*

4ah, ¹³C NMR, 126 M, DMSO-*d6*

