Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Enhancing effect of Cu and Sn doping on low-temperature catalytic activity and

operating temperature window of γ-Fe₂O₃ in NH₃-SCR of NOx

Xiaobo Wang ^{1, 2*}, Xiaoxue Zhang ¹, Ning Guo ¹, Xiaojie Cao ¹, Jingliang Liu ¹,

Keting Gui³

¹ School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171,

Jiangsu, China

² College of Chemistry and Materials Science, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, Anhui Normal University, Wuhu, 241002, Anhui, China

³ School of Energy and Environment, Southeast University, Nanjing 210096, Jiangsu, China

* Corresponding author & E-mail address: xb_wang88@126.com (Xiaobo Wang)

Catalyst characterizations

The specific surface areas of catalysts was tested on a adsorption equipment (3H-2000PS1, Micromeritics, USA) at -196 °C and calculated by the BET method. The SEM images of catalysts were acquired on FEI QUANTA FEG250 (FEI, USA) scanning electron microscope.

The XRD patterns of catalysts were achieved on a X-ray diffractometer (D8 Advance, Bruker, Germany) with Cu Kα radiation.

Raman spectra of these catalysts were obtained on a Raman spectrometer (InVia, Renishaw, U.K.) with a 532 nm Ar⁺ laser beam at room temperature. The spectra were collected in the range of 100-800 cm⁻¹.

Ammonia temperature-programmed desorption (NH₃-TPD) tests were performed to evaluate surface acidity of catalysts on a chemisorption analyzer (MicrotracBEL BETCAT-A, Japan). After purged at 300 °C in He for 1 h, 200 mg catalyst was chilled to 50 °C, 30 mL/min of 1% NH₃-He was then introduced at this temperature until it was saturated. Next, He was injected to purge the gaseous NH₃. Lastly, the data were gained from 50 to 600 °C.

Hydrogen temperature-programmed reduction (H_2 -TPR) experiments were executed on the same instrument of the NH₃-TPD test to estimate the redox capacity of these catalysts. Before the test, 50 mg catalyst underwent a one-hour purification process in N₂ at 350 °C, after which they were cooled to 100 °C. Afterward, the reduction experiments were executed from 100 to 600 °C in 30 mL/min of 10% H₂/Ar mixed gas and the data were recorded simultaneously. The surface chemical information of different catalysts was obtained by X-ray photoelectron spectroscopy (XPS) measurements (ESCALAB 250Xi, Thermo Fisher, USA) using a radiation of Al Kα. All the binding energies were calibrated using the C 1s peak at 284.6 eV.

The *in situ* DRIFT experiments were performed on a FTIR spectrometer (IS20, Nicolet, USA). Before the tests, each catalyst was purified in N₂ for one hour at 400 °C and the background spectra were recorded by cooling the temperature to 240 °C. After pretreating the catalysts for one hour with 1000 ppm NO+5% O_2/N_2 (1000 ppm NH₃/N₂), the gas was changed to 1000 ppm NH₃/N₂ (1000 ppm NO+5% O_2/N_2). Subsequently, the spectra were captured at various times by removing the background spectra automatically.

Fig. S1. SEM images of these catalysts: (a) $\gamma\text{-}Fe_2O_3,$ (b) Cu/ $\gamma\text{-}Fe,$ and (c) Sn/ $\gamma\text{-}Fe.$