Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supplementary Information

Electrodeposition of 3D dendritic Cu-Sn bimetallic alloy for electrocatalytic nitrate reduction to ammonia

Jinxiu Zhao,^{a,b,*} Jingyi Xu,^c and Liyi Shi^{a,*}

^a Emerging Industries Institute, Shanghai University, Jiaxing 314050, Zhejiang, China.

^b School of Materials Science and Engineering, University of Jinan, Jinan 250022, P.

R. China.

^c Shandong Genyuan New Materials Co., LTD., Weihai, 264400, Shandong, China.

*Corresponding author.

E-mail address: shiliyi@shu.edu.cn (L. Shi)

mse_zhaojx@ujn.edu.cn (J. Zhao)

Materials

Sodium nitroprusside (C₅FeN₆Na₂O₂·H₂O), ammonium chloride (NH₄Cl), copper sulfate (CuSO₄), potassium hydroxide (KOH), sodium nitrite (NaNO₂), sodium nitrate⁻¹⁵N (Na¹⁵NO₃), sulfamic acid (NH₂SO₃H), N⁻(1–naphthyl) ethylenediamine dihydrochloride (C₁₂H₁₄N₂), sulfonamide (H₄N₂O₂S), phosphoric acid (H₃PO₄) and sodium hypochlorite solution (NaClO) were purchased from Maclean. Stannous chloride (SnCl₂) and sodium nitrate (NaNO₃) were purchased from Sinopharm Chemical Reagent Co., Ltd. Anhydrous sodium sulfate (Na₂SO₄) and sodium salicylate (C₇H₅NaO₃) were purchased from Aladdin. Anhydrous ethanol (C₂H₅OH) and hydrazine hydrate (N₂H₄·H₂O) were purchased from Tianjin FuYu Chemical Fine Co., Ltd. Sodium hydroxide (NaOH) was purchased from Tianjin Damao Chemical Reagent Factory, and nitric acid (HNO₃), sulfuric acid (H₂SO₄) and hydrochloric acid (HCl) were purchased from Yantai Far East Fine Chemical Co., Ltd.

Characterization

X-ray diffraction (XRD) patterns were acquired by using D8 focus diffractometer (BLumker AXS, Germany). The morphology images were obtained from Gemini 300 field emission SEM (Zeiss, Germany) and JEM-2100 TEM (Zeiss, Germany). Elements species and distribution were obtained by an X-Max^N 50 EDS (Oxford, China). XPS spectra were obtained from an Axis Supra X-ray photoelectron spectrometer (Shimadzu, Japan). The absorbance data of spectrophotometer were measured on TU-1909 spectrophotometer (Beijing Puxi Instrument Co. Ltd, China). The isotope labeling nuclear magnetic resonance (NMR) were measured on AVANCE III HD 600 MHz (Bruker, Swiss Confederation).

Preparation of Cu-Sn alloy

The dendritic Cu-Sn alloy catalysts were synthesized by DHBT electrodeposition technique. Two-step electrodeposition was used to prepare the 3D dendritic Cu-Sn alloy catalyst. Firstly, constant current (0.25 A cm⁻² for 5 min) electrodeposition was used to form porous structures on the copper foil under acidic conditions (0.5 M

 H_2SO_4 , $SnCl_2$, and $CuSO_4$) using the hydrogen bubble template method to increase the surface area of the catalyst. The 3D dendritic copper-tin bimetallic alloy catalyst was obtained, then washed with ultrapure water and ethanol, and dried at 60 °C for 2 h. The concentration of $CuSO_4$ and $SnCl_2$ to synthesize series of Cu-Sn alloy listed in Table S2.

Electrochemical measurements

Electrochemical measurements were performed with a CHI 660E electrochemical analyzer (CHI Instruments, Inc., Shanghai) in a standard three-electrode system using Cu-Sn alloy as working electrode, Ag/AgCl as reference electrode, and graphite rod as counter electrode. For NO_3^- reduction experiments, the 0.1 M $Na_2SO_4 + 0.01$ M $NaNO_3$ was bubbled with Ar for 30 min before the measurement.

The following formula was utilized to convert the potential reported in this work to RHE scale through calibration: $E(vs RHE) = E(vs Ag/AgCl) + 0.197 + 0.059 \times pH$, and the polarization curve was the steady-state curve after a few cycles. All electrochemical tests were conducted at 25 °C. During NO₃RR tests, two chambers of the H-type electrolytic cell was separated by a Nafion membrane, so that the anode chamber can continuously provide the H⁺ required for the reaction to the cathode chamber for NH₃ formation. Before NO₃RR tests, the Nafion membrane was pre-treated by heating in 5% H₂O₂ solution and ultrapure water at 80 °C for 1 h, respectively. All experiments were carried out at room temperature (25 °C).

Determination of NH₃

The produced ammonia was estimated by indophenol blue method by ultraviolet spectroscopy.¹ In detail, 400 μ L electrolyte was diluted to 4 mL for further use, then 4 mL aforementioned solution was removed from the cathodic chamber and added into 50 μ L oxidizing solution containing NaClO ($\rho_{Cl} = 4 - 4.9$) and NaOH (0.75 M), followed by further adding 500 μ L coloring solution containing 0.4 M C₇H₅O₃Na and 0.32 M NaOH, and 50 μ L catalyst solution (0.1 g Na₂[Fe(CN)₅NO]·H₂O diluted to 10 mL with deionized water) in turn. After standing at 25 °C for 2 h, the UV-Vis absorption spectrum was measured. The concentration of indophenol blue was

determined using the absorbance at a wavelength of 655 nm. In this study, a concentration-absorbance curve was obtained using a standard ammonium chloride solution firstly. The fitted curve (y = 0.382x + 0.0425, R²=0.999) indicates a good linear relationship between the absorbance value and the NH₃ concentration.

Calculation of NH₃ yield rate and FE

The NH₃ yield rate and FE were calculated using the following formula:

$$NH_3 \text{ yield rate} = (c_{NH3} \times V) / (17 \times t \times A)$$
(1)

$$FE = [8 \times F \times c_{NH3} \times V / 17 \times 10^6 \times Q] \times 100\%$$
⁽²⁾

Where c_{NH3} (µg mL⁻¹) is the measured NH₃ concentration; V (mL) is the volume of the electrolyte; t (h) is the reduction reaction time; and A (cm²) is the geometric area of the cathode; F (96485 C mol⁻¹) is the Faraday constant; and Q (C) is the amount of electricity applied.

Fig. S1. (a) and (b) SEM images of single Cu. (c) and (d) SEM images of single Sn.

Fig. S2. SAED image taken from Cu-Sn alloy.

Fig. S3. EDX spectrum of Cu-Sn alloy.

Fig. S4. Optical photograph of the reaction device.

Fig. S5. (a) UV–Vis absorption spectra of various NH_3 concentrations after 1 h of color development at room temperature. (b) Calibration curve used to calculate NH_4^+ concentration.

Fig. S6. (a) UV–Vis absorption spectrum of NH_3 concentration and (b) Timedependent current density curves of substrate, single Sn, single Cu foil, and Cu-Sn alloy for NO₃RR at –1.2 V (RHE).

Fig. S7. Average NH_3 yield rates of Cu-Sn alloy with different ratio of Cu and Sn for NO_3RR at -1.2 V vs. RHE.

Fig. S8. Average NH₃ yield rates of Cu-Sn alloy in 0.1 M Na₂SO₄ (containing 0.01 M NaNO₃), 0.1 M Na₂SO₄ (without NO₃⁻) and open circuit for NO₃RR at -1.2 V vs. RHE.

Fig. S9. UV–Vis absorption spectra of the 0.1 M Na_2SO_4 solution and 0.1 M Na_2SO_4 solution (containing 0.01 M NO_3^-) after charging at -1.2 V vs. RHE for 1 h and at open-circuit potential under ambient conditions for 1 h after incubated with NH_3 color agent.

Fig. S10. XRD pattern for Cu-Sn alloy after stability test in 0.1 M Na₂SO₄ (containing 0.01 M NaNO₃).

Fig. S11. SEM image of Cu-Sn alloy after stability test in 0.1 M Na_2SO_4 (containing 0.01 M $NaNO_3$).

Fig. S12. XPS spectra of Cu-Sn alloy after stability test at -0.8 V (RHE.) in (a) Cu 2p, (b) Sn 3d regions.

Catalyst	NH ₃ yield rate FE (%)		Ref.
Cu-Sn alloy	293.12 μ mol h ⁻¹ cm ⁻²	78.57	This work
Cu/Cu ₂ O	$0.2449 \text{ mmol } h^{-1} \text{ cm}^{-2}$	95.8	2
TiO ₂ -OVs	$0.0445 \text{ mmol } h^{-1} \text{ cm}^{-2}$	85.0	3
PTCDA	$0.030 \text{ mmol } h^{-1} \text{ cm}^{-2}$	85.9	4

Table S1. Comparison of the NH_3 electrosynthesis activity for Cu-Sn alloy in 0.1 M Na_2SO_4 (containing 0.01 M NaNO₃) with other catalysts.

	Cu:Sn = 2:1	Cu:Sn = 1:1	Cu:Sn = 1:2
Concentration of SnCl ₂	0.1 M	0.05 M	0.05 M
Concentration of CuSO ₄	0.05 M	0.05 M	0.1 M

Table S2. The concentration of $CuSO_4$ and $SnCl_2$ to synthesize series of Cu-Sn alloy.

References

- 1. D. Zhu, L. Zhang, R. E. Ruther and R. J. Hamers, *Nat. Mater.*, 2013, **12**, 836–841.
- Y. Wang, W. Zhou, R. Jia, Y. Yu and B. Zhang, Angew. Chem. Int. Ed., 2020, 59, 5350–5354.
- 3. R. Jia, Y. Wang, C. Wang, Y. Ling, Y. Yu and B. Zhang, ACS Catal., 2020, 10, 3533–3540.
- Y. Wang, A. Xu, Z. Wang, L. Huang, J. Li, F. Li, J. Wicks, M. Luo, D. Nam, C. Tan, Y. Ding, J. Wu, Y. Lum, C. Dinh, D. Sinton, G. Zheng and E. H. Sargent, J. Am. Chem. Soc., 2020, 142, 5702–5708.