Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information For:

Dual Active Hf(IV)-Organic Framework for Detection of FOX-7 and Heterogeneous Catalyst on Knoevenagel Condensation

Aniruddha Das, *a Dhruvil Chavda,^{b, c} Moutusi Manna,^{b, c}Asit Kumar Das*d

^aAnalytical and Environmental Science Division and Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat 364002, India.

^bApplied Phycology and Biotechnology Division, CSIR Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat 364002, India.

^cAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.

^dDepartment of Chemistry, Krishnath College, Berhampore, Murshidabad, West Bengal, 742101, India.

*Corresponding author. Tel: +91-9706675521; +91-7001013825

E-mail address: dasaniruddha1991@gmail.com; akdas.chem@gmail.com

Materials: All the chemicals, such as Hafnium tetrachloride, 2-amino terephthalic acid, 2hydroxy 4-methoxy benzaldehyde, sodium cyanoborohydride, formic acid, DMF, isopropanol, and various substrates used for catalysis were purchased from commercial sources and used as received.

Characterization: ¹H and ¹³C NMR were recorded using a Geol resonance ECZ600R spectrometer at 25 °C. TMS was used as an internal reference during the NMR spectroscopic study. Parkin Elmer 883 spectrometer was used to record the FT-IR data using a KBr pellet. The following indications were used to indicate the corresponding absorption bands: very strong (vs), strong (s), medium (m), weak (w), shoulder (sh), and broad (br). Cu-Kα radiation was used to carry out the XRPD study, and data was recorded over a 20 range of 5-50 °. Thermogravimetric analyses (TGA) were carried out using an SDT Q600 thermo gravimetric analyser in the temperature range of 25-700 °C under an argon atmosphere at a heating rate of 10 °C min-1. Nitrogen sorption isotherms were recorded on a Quantachrome Autosorb iQMP gas sorption analyser at -196 °C. X-ray photoelectron spectra (XPS) were obtained from a Thermo Fischer Scientific ESCALAB XI+ using an Al K α (h ν = 1486.6 eV) X-ray source with a base vacuum operated at 300 W. JEOL JSM-7100F instrument working at 18 kV accelerating voltage was used to record the FE-SEM data. Before taking the FE-SEM images, the thin coating of Au (~ 4 nm) was coated using a vacuum evaporator. An Edinburgh Instrument Life-Spec II equipment was used to measure the fluorescence lifetimes by employing a time-correlated single-photon counting (TCSPC) procedure. UV-vis spectra in the region 250-800 nm was recorded using a Perkin Elmer Lambda 25 UV-vis spectrometer. All solutions for the UV-vis measurements were prepared by using Milli-Q water.

Synthetic protocol of MOF CSMCRI-KNC.

Scheme S1. Schematic presentation of synthesis of MOF CSMCRI-KNC.

Fig. S1. FT-IR spectra of (1) H₂BDC-NH-CH₂-Ph-2OH-4OCH₃ linker, (2) as-synthesized **CSMCRI-KNC**, and (3) **CSMCRI-KNC'**.

Fig. S2. TG curves of as-synthesized CSMCRI-KNC (green) and CSMCRI-KNC' (violet) recorded in an N_2 atmosphere in the temperature range of 30-650 °C with a heating rate of 5 °C min⁻¹.

Fig. S3. The survey XPS spectrum (a) and deconvoluted XPS pattern of (b) C1s, (c) O1s, and (d) N1s in free linker.

Fig. S4. X-ray photoelectron survey spectra of MOF (before catalysis) showing the presence of O 1s, N 1s and C 1s spectra at their corresponding binding energies.

Fig. S5. N₂ sorption curve of CSMCRI-KNC' MOF performed at -196 °C.

Fig. S6. Ball-and-stick representation of the framework structure of **CSMCRI-KNC'** SBU having formula $[Hf_6O_4(OH)_4]^{12+}$. Colour codes: Hf, deep cyan; C, white gray; O, red. Hydrogen atoms have been removed from the structural plots for clarity.

Fig. S7. Space filled representation of the framework structure of **CSMCRI-KNC'** in facecentred cubic (fcc) packing Colour codes: C, white gray; O, red. N, blue; Hydrogen atoms have been removed from the structural plots for clarity.

Fig. S8. Quenching of fluorescence response of MOF CSMCRI-KNC' in addition to (10 mM, 160 μ L) various analytes in aqueous media.

Fig. S9. Quenching of fluorescence response of MOF CSMCRI-KNC' in addition to (10 mM, 160 μ L) FOX-7 in presence of (10 mM, 160 μ L) various competitive analytes in aqueous media.

Fig. S10. Stern-Volmer plot for MOF CSMCRI-KNC' at high concentration of FOX-7.

Fig. S11. Time-resolved fluorescence lifetime decay profile of **CSMCRI-KNC'** before and after addition FOX-7 in water medium.

Fig. S12. The recyclability performances of f CSMCRI-KNC' towards FOX-7 detection in water medium.

Fig. S13. XRPD patterns of the (red) simulated Hf-UiO-66, (blue) as-synthesized CSMCRI-KNC and (black) CSMCRI-KNC'.

Fig. S14. FE-SEM analysis of MOF CSMCRI-KNC'.

Fig. S15. FE-SEM analysis of MOF CSMCRI-KNC' after FOX-7 detection.

Fig. S16. EDX spectrum of MOF CSMCRI-KNC' before FOX-7 detection.

Fig. S17. EDX spectrum of MOF CSMCRI-KNC' after FOX-7 detection.

Fig. S18. X-ray photoelectron survey spectra of MOF (after sensing) showing the presence of C1s, O 1s, N 1s, and Hf 4f spectra at their corresponding binding energies.

Fig. S19. The (a) deconvoluted XPS pattern of (b) C1s, (c) O1s, and (d) N1s and (d) Hf 4f in FOX-7 treated MOF.

Fig. S20. The excitation spectra of only CSMCRI-KNC', only FOX-7 and the FOX-7 treated CSMCRI-KNC'.

Fig. S21. The excitation spectrum of FOX-7 and the emission spectrum of only CSMCRI-KNC'.

Fig. S22. Effect of temperature for the Knoevenagel Condensationreaction of barbituric acid (1a) (1 mmol) with 4-methylbenzaldehyde (2a) (1 mmol) in EtOH.

Fig. S23. Effect of reaction time for the Knoevenagel Condensationreaction of barbituric acid (1a) (1 mmol) with 4-methylbenzaldehyde (2a) (1 mmol) in EtOH in presence (red) and absence (blue) of catalyst.

Fig. S24.Effect of solvent for the Knoevenagel Condensationreaction of barbituric acid (1a) (1 mmol) with 4-methylbenzaldehyde (2a) (1 mmol) 80 °C.

Fig. S25. ¹H NMR spectrum of compound 3f.

Fig. S26. ¹H NMR spectrum of compound 3j.

Fig. S27. ¹H NMR spectrum of compound 3k.

Fig. S28. ¹³C NMR spectrum of compound 3f.

Fig. S29. ¹³C NMR spectrum of compound 3j.

Fig. S30. ¹³C NMR spectrum of compound 3k.

Fig. S31. FE-SEM analysis of MOF **CSMCRI-KNC'** after catalysis.

Fig. S32. FE-SEM analysis of MOF CSMCRI-KNC' after catalysis.

Fig. S33. X-ray photoelectron survey spectra of MOF (after catalysis) showing the presence of O 1s, N 1s and C 1s spectra at their corresponding binding energies.

Table S1. Comparison of the detection limit, response time, nature of fluorescence change, and solvent system used for FOX-7 detection for probes reported to date.

Entry	Name of probe	Detection Limit	Response Time (s)	Medium Used	Nature of Fluorescence	Ref.
1	CSMCRI- KNC'	189	20	water	Turn-off	This work
2	L·Eu	17	91	acetonitrile	Turn-off	1
3	L·Tb	22	84	acetonitrile	Turn-off	1
4	AM-8-Tb	218	not available	acetonitrile	Turn-off	2
5	AM-8-Eu	205	not available	acetonitrile	Turn-off	2
6	AM-8-Zn	77	not available	acetonitrile	Turn-off	2

Table S2. Average excited-state lifetime ($\langle \tau \rangle$) values of **CSMCRI-KNC'** before and after addition of 160 µL of 0.21 (M) FOX-7 solution ($\lambda ex = 336$ nm).

Volume of FOX-7 solution added (µL)	B ₁	B ₂	a ₁	a ₂	τι (ns)	$\tau_2(ns)$	<τ>* (ns)	χ ²
0	0.03	0.96	1.23	0.85	0.34	14.85	13.04	1.09
160	0.13	0.86	1.89	0.24	0.25	12.31	3.42	1.15

 $<\tau>* = a_1 \tau_1 + a_2 \tau_2$

Table S3. Comparison table of catalytic performance in terms of TON (turnover) of the

 presented CSMCRI-KNC' catalyst with other reported catalysts.

Entry	Ph-	CH ₂ (CN) ₂	Catalyst	Temp.	Time	Yield	TON	Ref.
	CHO (mmol)	(mmol)		(° C)	(minutes)	(%)		
1	1.0	1.0	Cu-MOF (LOCOM-1)	r.t	360	98	2462	3
			(0.04 mmol)					

2	10	20	JNU-402-NH ₂	80 °C	60	99	1665	4
			(0.04 mmol)					
3	2.1	2.0	Cd-MOF	r.t	720	98	1225	5
			(0.08 mmol)					
4	10	20	NUC-54a	60 °C	300	98	327	6
			(0.3 mol%)					
5	1.0	1.1	$(Zn(ADA)(L)] \cdot 2H_2O)_n$	r.t	60	99	99	7
			(1.0 mol%)					
6	1.0	1.1	[Cd(DDIH) ₂ H ₂ O] _n	r.t	15	96	32	8
			(3.0 mol%)					
7	1.0	1.0*	CSMCRI-KNC'	80 ° C	120	89	189	This
			(0.005 mmol)					work

*Barbituric acid (1.0 mmol) was used instead of malononitrile.

References.

- 1. T. S. Mahapatra, A. Dey, H. Singh, S. S. Hossain, A. K. Mandal and A. Das, *Chem. Sci.*, 1032-1042, **11**, 2020.
- V. R. Ramlal, A. Singh, A. Das, R. Lo and A. K. Mandal, Sens. Actuators, B, 2024, 409, 135551-135558.
- 3. S. Afaq, M. U. Akram, W. M. A. Malik, M. Ismail, A. Ghafoor, M. Ibrahim, M. Nisa, M. N. Ashiq, F. Verpoort and A. H. Chughtai, *ACS Omega*, 2023, **8**, 6638-6649.
- 4. G. Q. Huang, J. Chen, Y. L. Huang, K. Wu, D. Luo, J. K. Jin, J. Zheng, S. H. Xu and W. Lu, *Inorg. Chem.*, 2022, **61**, 8339–8348.
- 5. S. Hasegawa, S. Horike, R. Matsuda, S. Furukawa, K. Mochizuki, Y. Kinoshita and S. Kitagawa, *J. Am. Chem. Soc.*, 2007, **129**, 2607-2614.
- 6. H. Chen, T. Zhang, S. Liu, H. Lv, L. Fan and X. Zhang, *Inorg. Chem.*, 2022, **61**, 11949-11958.
- 7. B. Parmar, P. Patel, V. Murali, Y. Rachuri, R. I. Kureshy, N.-u. H. Khan and E. Suresh, *Inorg. Chem. Front.*, 2018, **5**, 2630-2640.
- 8. L. Tom and M. A. Kurup, J. Solid State Chem., 2021, 294, 121846.