Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supplementary Material

MoS₂@CoFe-MOF catalysts by one-pot hydrothermal synthesis enhanced electron

interaction between MoS₂ nanoflower and bimetallic MOF for efficient oxygen

evolution

Jiahui Li, Yufen Wang, Qinyuan Yu, Xuedong Wei*

Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, School of Chemistry & Material Science, Shanxi Normal University, Taiyuan 030031, PR China.

Table of contents

Supplementary MaterialS	1
Supplementary FiguresS	2
Fig. S1. (a-c) SEM images of the MoS ₂ , (d-e) SEM images of the MoS ₂ @Co-MOF(CC)S	2
Fig. S2. TEM images of the MoS ₂ @CoFe-MOFS	3
Fig. S3. (a) The XPS survey of the MoS ₂ @CoFe-MOF sampleS	4
Fig. S4. XPS spectra of C 1s in MoS2@CoFe-MOF and CoFe-MOFS	5
Fig. S5. MoS ₂ @Co-MOF(CC): (a) XPS full spectra, (b-d) XPS spectra of Mo 3d, Co 2p, S 2p	p.
Fig. S6 CV curve of the non-Faraday voltage range (a) CoFe-MOF(CC) (b) MoS ₂ (CC) (c	6 2)
MoS ₂ @Co-MOF(CC), (d) MoS ₂ @Fe-MOF(CC).	7
Fig. S7. MoS ₂ @CoFe-MOF(CC) after the stability test: (a) XRD patterns, (b) XPS spectra	a,
(c-h) XPS spectra of Mo 3d, Co 2p, Fe 2p, S 2p, O 1s and C1sS	8
Fig. S8. $MoS_2@Fe-MOF(CC)$, $MoS_2@Co-MOF(CC)$, $MoS_2@CoFe-MOF(CC)$: (a) LSY	V
curves, (b)Electrochemical impedance diagram, (c)Stability test curves, (d)Plots of the currer	ıt
density difference ($\Delta j = ja-jc$) at the central potential of the potential window (vs. RHE) against	st
the scan rateS	9
Fig. S9. Stability test curves of MoS ₂ @CoFe-MOF(CC) at 50 mA·cm ⁻² S1	0
Figure S10. (a) The TOFs of different catalysts at the overpotentials of 220 mV, (b) Ga	ıs
production measured by drainage	1
Figure S11. (a) XRD patterns of MoS ₂ @Co-MOFS1	2
Table S1 Comparison of alkaline OER performance with other previously reported transitio	n
metal-based electrocatalysts	3
Table S2 Elements content comparison from XPS and EDS methods of MoS2@CoFe-MO	F
sample	4

Supplementary Figures

Fig. S1. (a-c) SEM images of the $MoS_{2,}(d-e)$ SEM images of the $MoS_{2}@Co-MOF(CC)$.

Fig. S2. TEM images of the MoS₂@CoFe-MOF.

Fig. S3. (a) The XPS survey of the $MoS_2@CoFe-MOF(CC)$.

Fig. S4. XPS spectra of C 1s in MoS₂@CoFe-MOF and CoFe-MOF.

Fig. S5. MoS₂@Co-MOF(CC): (a) XPS full spectra, (b-d) XPS spectra of Mo 3d, Co 2p, S 2p.

Fig. S6. CV curve of the non-Faraday voltage range (a) CoFe-MOF(CC), (b) $MoS_2(CC)$, (c) $MoS_2@Co-MOF(CC)$, (d) $MoS_2@Fe-MOF(CC)$.

Fig. S7. $MoS_2@CoFe-MOF(CC)$ after the stability test: (a) XRD patterns, (b) XPS spectra, (c-h) XPS spectra of Mo 3d, Co 2p, Fe 2p, S 2p, O 1s and C1s.

Fig. S8. MoS₂@Fe-MOF(CC), MoS₂@Co-MOF(CC), MoS₂@CoFe-MOF(CC): (a) LSV curves, (b)Electrochemical impedance diagram, (c)Stability test curves, (d)Plots of the current density difference ($\Delta j = ja-jc$) at the central potential of the potential window (vs. RHE) against the scan rate.

Fig. S9. Stability test curves of $MoS_2@CoFe-MOF(CC)$ at 50 mA·cm⁻².

Figure S10. (a) The TOFs of different catalysts at the overpotentials of 220 mV, (b) Gas production measured by drainage.

Figure S11. (a) XRD patterns of MoS2@Co-MOF.

Electrocatalysts	Electrolyte	Substrate	Overpotential (10 mA· cm ⁻²)	Tafel slope [mV·dec ⁻¹]	Ref
MoS ₂ @CoFe-MOF	1 M KOH	CC	220mV	18.04	This work
(Ni ₂ Co ₁) _{0.925} Fe _{0.075} - MOF	1 M KOH	GCE	257mV	41.3	1
FeCo-MNS-1.0	0.1 M KOH	Pt-foil	298mV	21.6	2
CoMoSeS	1 M KOH	CC	375mV	60	3
MoS_2 Nano Islands	1 M KOH	GCE	300mV	45	4
CoFe-MOF	1 M KOH	GCE	265mV	44	5
CoFe/C-650	1 M KOH	GCE	246mV	45.27	6
MoS_2	1 M KOH	NF	320mV	44	7
Co, Nb-MoS ₂ /TiO ₂	1 M KOH	NF	260mV	81.2	8
CoFeO _x (OH) _y /MoS ₂ /CP (CFOMS/CP)	1 M KOH	CC	242mV	37.9	9
CoMoS	1 M KOH	CC	370mV	45	10

 Table S1 Comparison of alkaline OER performance with other previously reported transition metal-based electrocatalysts.

Table S2 Elements content comparison from XPS and EDS methods of $MoS_2@CoFe-MOF$ sample.

Test Method	XPS	EDS		
Spectrum	Tan tests and bar start tan defined by the start start start tan defined by the start st			
Element	at%	at%		
С	52.53	16.01		
О	19.43	41.50		
Fe	1.85	4.27		
Со	8.57	17.02		
S	12.36	12.68		
Мо	5.26	8.52		
Total:	100.00	100.00		

References

- [1] Q. Qian, Y. Li, Y. Liu, L. Yu and G. Zhang, Ambient fast synthesis and active sites deciphering of hierarchical foam-like trimetal–organic framework nanostructures as a platform for highly efficient oxygen evolution electrocatalysis, Adv. mater., 2019, 31, 1901139.
- [2] L. Zhuang, L. Ge, H. Liu, Z. Jiang, Y. Jia, Z. Li, D. Yang, R. K. Hocking, M. Li, L. Zhang and X. Wang, A surfactant-free and scalable general strategy for synthesizing ultrathin two-dimensional metal–organic framework nanosheets for the oxygen evolution reaction, Angew. Chem., 2019, 131, 13699-13706.
- [3] B. K. Martini, L. S. Bezerra, S. Artemkina, V. Fedorov, P. K. Boruah, M. R. Das and G. Maia, Efficient OER nanocomposite electrocatalysts based on Ni and/or Co supported on MoSe₂ nanoribbons and MoS₂ nanosheets, Chem. Eng. J. Adv., 2022, 9, 100206.
- [4] B. Chen, P. Hu, F. Yang, X. Hua, F.-F. Yang, F. Zhu, R. Sun, K. Hao, K. Wang and Z. Yin, In situ porousized MoS2 nano islands enhance HER/OER bifunctional electrocatalysis, Small, 2023, 19, 2207177.
- [5] Z. Zou, T. Wang, X. Zhao, W.-J. Jiang, H. Pan, D. Gao and C. Xu, Expediting in-situ electrochemical activation of two-dimensional metal–organic frameworks for enhanced OER intrinsic activity by iron incorporation, ACS Catal., 2019, 9, 7356-7364.
- [6] K. Srinivas, Y. Chen, Z. Su, B. Yu, M. Karpuraranjith, F. Ma, X. Wang, W. Zhang and D. Yang, Heterostructural CoFe₂O₄/CoO nanoparticles-embedded carbon nanotubes network for boosted overall water-splitting performanc, Electrochim. Acta, 2022, 404, 139745.
- [7] B. J. Rani, S. S. Pradeepa, Z. M. Hasan, G. Ravi, R. Yuvakkumar and S. I. Hong, Supercapacitor and OER activity of transition metal (Mo, Co, Cu) sulphides, J. Phys. Chem. Solids, 2020, 138, 109240.
- [8] D. C. Nguyen, T. L. L. Doan, S. Prabhakaran, D. T. Tran, D. H. Kim, J. H. Lee and N. H. Kim, Hierarchical Co and Nb dual-doped MoS₂ nanosheets shelled micro-TiO₂ hollow spheres as effective multifunctional electrocatalysts for HER, OER, and ORR, Nano Energy, 2021, 82, 105750.
- [9] C. Zhao, X. Zhang, S. Xu, G. Yang, J. Fan, J. Guo, W. Cai and C. Zhao, Construction of amorphous CoFeO_x(OH)_y/MoS₂/CP electrode for superior OER performance, Int. J. Hydrogen Energy, 2022, 47, 28859-28868.
- [10] J. Hou, B. Zhang, Z. Li, S. Cao, Y. Sun, Y. Wu, Z. Gao and L. Sun, Vertically aligned oxygenated-CoS₂–MoS₂ heteronanosheet architecture from polyoxometalate for efficient and stable overall water splitting, ACS Catal., 2018, 8, 4612-4621.