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S1 Instrumentation 

S.1.1 Fourier transform infrared (FTIR) scans. 

Classical KBr plates were exploited for FTIR sweeps through a 27 Bruker Tensor 

spectrophotometer. Resolution scales were modulated by 4 cm-1. 

S.1.2 1H and 13C NMR scans. 

NMR profiles were swept through An INOVA 500 machine employing DMSO-d6 as well 

as CDCl3 as solvents, in addition to employing Tetramethylsilane (TMS) as external 

standard. Chemical shifts are shown in part per million (ppm).

S.1.3 Thermal gravimetric analysis (TGA). 

TGA of CMPs were provided under N2 stream using TA Q-50 instrument. A closed Pt cane 

was used as sample holder, after that temperature was raised up to 800 °C under ramp of 

20 °C min-1 at N2 stream of an average of 50 ml min-1.

S.1.4 Solid state nuclear magnetic resonance (SSNMR). 

The Bruker Avance 400 NMR detector connected to the probe of Bruker magic-angle-

spinning (MAS) was employed for recording SSNMR profiles at a running of 32,000 scans.

S.1.5 Surface area, and porous features. 

Micromeritics ASAP 2020 surface area as well as porosity analyzer were employed for 

evaluating surface area and porosimetry of every CMP. Ultrapure N2 stream (up to ca. 1 

atm) as well as a liquified N2 bath extremely facilitated the obtaining of nitrogenic 

isotherms. 

S.1.6 X-ray photoelectron spectroscopy (XPS) spectra.  

Thermo Fisher scientific ESCALAB 250 connected a micro monochromatic Al Kα X-ray 

lamp (15 kV) with a dual-focusing full 180 spherical sector electron analyzer determined 

XPS scans. 



S.1.7 Field-emission scanning electron microscopy (FE-SEM). 

A JEOL JSM-7610F of SEM used for visualizing FE-SEM images. Notably, CMPs were 

sputtered using Pt for 150 s for clear visualization. 

S.1.8 Transmission electron microscopy (TEM). 

TEM visualizations of the obtained CMPs were checked through a JEOL-2100 scanning 

electron microscope after exposing them to 200 KV. 

S2 Synthesis methodologies 

S.2.1 N1,N1,N4,N4-Ttetrakis(4-bromophenyl)-p-phenylenediamine (TPPDA-4Br)

According to earlier reported work, the bromination of the pristine N1,N1,N4,N4-

tetraphenyl-p-phenylenediamine (TPPDA) was achieved as briefed in Scheme S1. Briefly, 

the TPPDA (2.42 mmol, 1 g) and dry DMF (40 mL) were mixed into a 50 mL round bottom 

flask. After that, N-Bromosuccinimide (NBS) (10.8 mmol, 1.94 g) was solved in a 20 mL 

of dry DMF which then dropped wisely to the TPPDA solution at 0°C as well as gentle 

magnetic stirring overnight. Finally, the flask ingredients were poured onto icy water, and 

then filtered, rinsed sever times via ethanol (1.64 g, 93% yield). FTIR: 1576, 1499, 1016 

cm-1 (Fig. S1). The 1H-NMR (CDCl3, 25 °C, 600 MHz): 7.35 (d, 8H), 6.94 (m, 12H). 13C 

NMR (CDCl3, 25 °C, 500 MHz): 132.3, 125.5, 125.2 ppm. HRMS (ESI): m/z calculated for 

C30H20Br4N2: 728.1; found 728.69 (Fig. S2).



Scheme S1 Schematic synthesis of TPPDA, and TPPDA-4Bor
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Fig. S1 FTIR of TPPDA-4Br, and TPPDA-4Bor 
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Fig. S2 Mass spectroscopy analysis of TPPDA-4Br

S.2.2 N1,N1,N4,N4-Tetrakis(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-p-

phenylene diamine (TPPDA-4Bor)

In a couple-neck flask, the previously designed TPPDA-4Br (1.2g, 5.8 mmol) was charged 

with the bis(pinacolato)diboron (2.6 g, 35.96 mmol), potassium acetate (0.5 g, 35,7 mmol), 

and 1,1′-ferrocenediyl-bis(diphenylphosphine) (dppf) (105 mg, 0.5 mmol) and then these 

powders were degassed for 15 min. Afterwards, a dioxane (50 mL) was charged to the flask 

under a nitrogenic pressure then the rection was kept at 110° C for 48 hours under refluxing 

conditions and stirring. Afterwards, the solution was poured onto icy water, then separated, 

rinsed, dried using ethanol as well. Column chromatography was applied ensuring the 

complete purging of the moiety via a co-solvent of THF and hexane of a ratio of 3:7. 

Notably, the precipitate was dried at 70° C (1.33 g, yield, 88 %). FTIR: 2976, 1503, 1392, 

1268, 1144, 1015 cm-1 (Fig. S1). 1H-NMR (DMSO, 25 °C, 600 MHz): 7.17 (d, J = 8.0 Hz, 

8H), 7.06 (d, J = 8.0 Hz, 8H), and 6.96 (d, J = 8.0 Hz, 4H) (Fig. S3). 13C-NMR (CDCl3, 

25 °C, 500 MHz): 141.75, 133.25, 127.74, 121.78, 107.79, 83.92, 23.97 ppm (Fig. S4). 

HRMS: m/z calculated for C54H68B4N2O8: 916.37; found 916.51 (Fig. S5).
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Fig. S3 1H NMR spectra of TPPDA-4Bor
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Fig. S4 13C NMR spectra of TPPDA-4Bor
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Fig. S5 Mass spectroscopy analysis of TPPDA-4Bor

S.2.3 Synthesis of Tris(4-bromophenyle)amine (TPA-3Br)

The TPA-3Br was designed and scanned according to the earlier work. Briefly, as clarified 

in scheme S2, a 250 mL flask was supplemented with triphenylamine (5 g, 4.08 mmol), 

DMF (120 mL) under icy and dark environment. A solution of NBS (12 g, 12.32 mmol), 

and DMF (60mL) was dropped wisely into the reaction flask under continuous magnetic 

stirring which lasted overnight at ambient temperature. After that, the yield was separated 

with dichloromethane (DCM) which then rinsed via methanol affording a white powder. 

FTIR scan: 3064, 1570, 1266, and 816 cm-1 (Fig. S6). 1H NMR scan (400 MHz, 25 °C, 

CDCl3): δ 7.35 ppm (d, 6H), and 6.921 ppm (d, 6H) (Fig. S7). 13C NMR scan (CDCl3, 25 

°C, 500 MHz): 146.7 ppm, 132.8, 126.01, and 116.38 ppm (Fig. S8).



Scheme S2 Schematic design of TPA-3Br
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Fig. S6 FTIR of Pristine TPA, and TPA-3Br
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S.2.1 Synthesis of 4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole (ThZ) 

The 4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole (ThZ) was designed via following the 

reported study as schemes briefly in Scheme S3. The commercial 4,7-Dibromo-2,1,3-



benzothiadiazole (Tz-2Br) (750 mg, 2.551 mmol) with tetrakis(triphenylphosphine) 

palladium(0) (590 mg, 0.510 mmol) were intermixed in a round flask which then degassed 

for 15 min. Afterwards, the reaction was continued after the injection of dry N,N-

Dimethylformamide (DMF, 10 mL) and 2-(tributylstannyl)thiophene (2.43 mL) under N2 

atmosphere. The flask was refluxed for 72 h at 120 °C under N2 atmosphere under 

continues magnetic stirring. Finally, an orange precipitate was formed after solvent 

evaporation. The powder was finally purified employing the column chromatography via 

eluent of DCM/hexane (1:4 v/v). FTIR (KBr pellets): 2965, 1730, 1633, and 1261 cm 1 

(Fig. S9). 1H NMR (400 MHz, 25 °C): δ = 8.13 (d, 2H), 7.88 (s, 2H), 7.47 (d, 2H) and 7.20 

(m, 2H) ppm (Fig. S10). The melting point was recorded as 120-122 °C.   

Scheme S3 Schematic design of ThZ, and ThZ-2Br.

S.2.2 Synthesis of 4,7-bis(5-bromothiophen-2-yl)benzo[c][1,2,5]thiadiazole (ThZ-2Br)

According to the previous report,1 4,7-bis(5-bromothiophen-2-

yl)benzo[c][1,2,5]thiadiazole (ThZ-2Br) was also designed employing the above 

synthesized ThZ (637 mg, 2.12 mmol) after dissolving it into a 50 mL chloroform which 

then mixed with N-bromosuccinimide (831 mg) in a couple-neck flask in dark 

environment. The reaction was conducted in the dark, under N2 stream, and at an ambient 

temperature for 3 nights. Finally, the powder was separated, rinsed as well with water, 

methanol, and chloroform. The yielded red powder was dried under vacuum overnight. 1H 

NMR (400 MHz, 25 °C): δ = 7.82 (d, 2H), 7.81 (s, 2H), and 7.17 (d, 2H) ppm (Fig. S11). 

The melting point was recorded to be 252-254 °C.  
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Scheme S4 Synthesis design of TPPDA-TPA CMP

  



Scheme S5 Schematic design of TPPDA-ThZ CMP
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Fig. S12 Wide-scan XPS of TPPDA-TPA, and TPPDA-ThZ CMPs



Table S1 XPS fitting properties of TPPDA-TPA, and TPPDA-ThZ CMPs.

TPPDA-TPA CMP TPPDA-ThZ CMPElement Status Binding 
Energy 
(eV)

FWHM Area FWHM Area

C=C 283.698 1.4 7476.945 0.93 5368.317
C=N 284.188 1.69 751.6447 0.84 4390.3
C-OH 284.75 1.58 2223.07 1.12 1701.041

C1s

C=O 
or C-S

287.5399 3.96 687.568 0.86 224.93

N-C 398 1.34 642.4345 1.377 187.38
N-S 398.136   0.95 332.86

N1s

N2 399.1 1.3 128.6982 1.63 282.2966
O-S 530.99   1.73 1823.45
O=C 531.6 1.42 2511.272 1.335 1621.45

O1S

C-OH 532.399 1.71 3764.766 1.15 732.12
C-S 163.399   3.82 81.685
S2p3/2 164.9   3.0778 211.22
S-O 167.699   2.8 353.699

S2p

S2P1/2 168.799   3.88 193.565



0 50 100 150 200 250 300
0

5

10

15

20

25

30

0 10 20 30 40 50 60 70
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 50 100 150 200 250 300
0

5

10

15

20

0 10 20 30 40 50
0.0

0.5

1.0

1.5

2.0

2.5

Ad
so

rb
ed

 C
O

2 (
cm

3  g
-1

)

Time (min)

 TPPDA-TPA CMP-273K
 TPPDA-ThZ CMP-273K

Ad
so

rb
ed

 N
2 (

cm
3  g

-1
)

Time (min)

 TPPDA-TPA CMP-273K
 TPPDA-ThZ CMP-273K

(d)(c)

(b)

Ad
so

rb
ed

 C
O

2 (
cm

3  g
-1

)

Time (min)

 TPPDA-TPA CMP-298K
 TPPDA-ThZ CMP-298K

(a)

Ad
so

rb
ed

 N
2 (

cm
3  g

-1
)

Time (min)

 TPPDA-TPA CMP-298K
 TPPDA-ThZ CMP-298K

Fig. S 13 Time dependent relationships of CO2 (a, b), and N2 (a, b) uptake onto TPPDA-

TPA, and TPPDA-ThZ CMPs at 298 K, and 273 K.  
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Fig. S 14 Adsorption capacities of CO2 utilizing those TPPDA-TPA, and TPPDA-ThZ 

CMP at 273 K (a) and 298 K (b) respectively over five runs. Performance Efficiency of 

TPPDA-TPA, and TPPDA-ThZ CMP at 273 K (c) and 298 K (d) respectively. 

Table S2  The CO2, N2 uptakes, selectivity, and isosteric heats at various pressures using 

TPPDA-TPA, and TPPDA-ThZ CMPs

CO2 uptake

(cm3g-1) 

N2 uptake

(cm3g-1) 

Selectivity 

CO2/N2

Qst of CO2 uptake (KJ 

mol-1)

Qst of N2 uptake (KJ 

mol-1)

Sample

273 K 298 K 273 K 298 K 273 K 298 K 0.1 

bar

0.4 

bar

0.005

 bar

0.04

bar

TPPDA-TPA 

CMP

27.49 18.6 3.686 2.207 7.47 8.433 24.04 20.44 26.7 15.39

TPPDA-ThZ 

CMP

14.67 8.81 2.184 0.944 6.72 9.333 23.26 13.75 10.34 27.67



Table S3 Comparative study of TPPDA-TPA, and TPPDA-ThZ CMPs for CO2 

adsorption with earlier reported porous materials.

CO2 uptake (mmol/g)Sample

273 K 298 K

Ref.

RLF-500 3.13 -- 2

ELF6 3.29 -- 3

ELF46 2.46 -- 3

PECONF-1 1.86 1.34 4

PECONF-2 2.85 1.98 4

PECONF-4 2.95 1.96 4

BPOP-1 1.79 0.98 5

BPOP-2 1.45 0.67 5

COF-102 1.56  -- 6

Fc-CMP-1 1.45 -- 7

BoxPOP-1 -- 0.91 8

BoxPOP-2 -- 1.04 8

BoxPOP-3 -- 0.29 8

Co3(BTB)2(DMA)4 -- 0.678 9

PP1-2-TAEA 1.13 -- 10

CHIT -- 0.1 11

CHIT-HTC-12 -- 0.1 11

CHIT-HTC-24 -- 0.3 11

CHIT-HTC-48 -- 0.45 11

BGM -- 0.247 12



BGM2 -- 0.252 12

BGM6 -- 0.295 12

BGM10 -- 0.581 12

ISM-1 -- 5 (mg g-1) 13

ISM-5 -- 9.3 (mg g-1) 13

AlPor–PIP–Br 1.3 -- 14

PE-SBA-15 -- 0.27 15

TPPDA-TPA CMP 1.27 0.83

TPPDA-ThZ CMP 0.65 0.39

This study
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