Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

1	Supporting Information for Publication
2 3	Synergistic Ramification of Synthesis Criterion and Amine Functionalization of UiO-66- NH ₂ MOFs for the Catalytic Degradation of Nerve Agent Simulant: Methyl-paraoxon
4 5	Selva Balasubramanian ^{a,b} , Arockia Jayalatha Kulandaisamy ^b and John Bosco Balaguru Rayappan ^{a,b} *
6 7	^a Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur, Tamil Nadu - 613 401, India
8	^b School of Electrical & Electronics Engineering (SEEE), SASTRA Deemed University
9	Thanjavur, Tamil Nadu - 613 401, India
10	
11	
12	
13	
14	
15	
16	
17	*Corresponding Author
18	John Bosco Balaguru Rayappan, Ph.D.
19	Centre for Nanotechnology & Advanced Biomaterials (CeNTAB) &
20	School of Electrical & Electronics Engineering
21	SASTRA Deemed University
22	Thanjavur – 613 401, Tamil Nadu, India
23	Phone: +91 4362 350 009; Ext: 2255
24	Fax: +91 4362 264 120
25	Email: <u>rjbosco@ece.sastra.edu</u>

1 Table S1. Synthesis parameters of UiO-66-NH $_2$ MOFs

S. No.	Sample	ZrCl ₄ (mmol)	H ₂ BDC-NH ₂ (mmol)	Modulator (Equivalence)	Synthesis Temperature (°C)	Duration (h)
1.	UN1	6 mmol	8.4 mmol	8**	80	24
2.	UN2	6 mmol	8.4 mmol	8***	80	24
3.	UN3	6 mmol	8.4 mmol	8*	80	24
4.	UN4	6 mmol	8.4 mmol	8*	100	24
5.	UN5	6 mmol	8.4 mmol	8*	120	24
6.	UN6	6 mmol	8.4 mmol	4*	80	24
7.	UN7	6 mmol	8.4 mmol	12*	80	24
8.	UN8	6 mmol	6.3 H ₂ BDC + 2.1 H ₂ BDC- NH ₂ [#]	6*	80	24
9.	UN9	6 mmol	4.2 H ₂ BDC + 4.2 H ₂ BDC- NH ₂ [#]	6*	80	24
10.	UN10	6 mmol	2.1 H ₂ BDC + 6.3 H ₂ BDC- NH ₂ [#]	6*	80	24

6 Fig. S1. Changes in the PXRD pattern of UiO-66- NH_2 samples with respect to its synthesis 7 condition: (a) modulators, (b) synthesis temperature, (c) HCl equivalence, and (d) ligand 8 composition.

- 9
- 10
- 11

Sample	Crystallite size (nm)	Lattice constant "a" (Å)	Microstrain (ε)	Dislocation density (10 ⁻⁴)
UN1	41	20.78	0.70	6.20
UN2	40	20.56	0.71	6.55
UN3	41	20.85	0.70	5.97
UN4	39	20.73	0.73	6.60
UN5	41	20.78	0.71	6.23
UN6	39	20.83	0.74	6.61
UN7	36	20.76	0.81	7.68
UN8	42	20.71	0.68	5.72
UN9	39	20.84	0.75	6.70
UN10	39	20.88	0.75	6.80

1 Table S2. Calculated lattice parameter values from PXRD analysis.

1 Section S2: Morphological studies

4 Fig. S2. SEM pictures of UiO-66-NH₂ samples with respect to their synthesis condition: (a)
5 AA modulation, (b) FA modulation, (c) 4 equi. HCl, (d) 12 equi. HCl, (e) 100°C synthesis
6 temperature, (f) 120°C synthesis temperature, (g) 2.1 mmol NH₂-H₂BDC (25% amine), (h) 4.2
7 mmol NH₂-H₂BDC (50% amine), and (i) 6.3 mmol NH₂-H₂BDC (75% amine).

3 Fig. S3. EDS and elemental mapping of acetic acid modulated UiO-66-NH₂ sample (UN1)
4 synthesized at 80°C.

3 Fig. S4. EDS and elemental mapping of formic acid modulated UiO-66-NH₂ sample (UN2)
4 synthesized at 80°C.

-

4 Fig. S5. EDS and elemental mapping of HCl modulated UiO-66-NH₂ sample (UN3) 5 synthesized at 80° C.

3 Fig. S6. EDS and elemental mapping of HCl modulated UiO-66-NH₂ sample (UN4) 4 synthesized at 100° C.

3 Fig. S7. EDS and elemental mapping of 4 equivalence HCl modulated UiO-66-NH₂ sample 4 (UN6) synthesized at 80° C.

3 Fig. S8. EDS and elemental mapping of 12 equivalence HCl modulated UiO-66-NH₂ sample 4 (UN7) synthesized at 80° C.

_

3 Fig. S9. EDS and elemental mapping of 8 equivalence HCl modulated UiO-66-NH₂ sample (UN8) synthesized at 80°C.

3 Fig. S10. EDS and elemental mapping of 8 equivalence HCl modulated UiO-66-NH₂ sample 4 (UN9) synthesized at 80° C.

Fig. S11. EDS and elemental mapping of 8 equivalence HCl modulated UiO-66-NH₂ sample (UN10) synthesized at 80°C.

Sample Description		Atomic Percentage (%)				
Sample Description	Carbon	Oxygen	Zirconium	Nitrogen	1	
UN1 - Acetic acid	61.42	27.23	5.91	5.44	1	
UN2 - Formic acid	55.94	32.08	2.66	9.31	1	
UN6 - 4 Equi. HCl	62.10	27.71	2.79	7.39		
UN3 - 8 Equi. HCl	70.23	21.73	1.83	6.21	i	
UN7 - 12 Equi. HCl	71.49	21.44	0.95	6.12	5	
UN4 - 100°C	74.87	18.26	0.92	5.96	H	
UN5 -120°C	76.16	17.17	0.67	6.00	H	
UN8 - 2.1 NH ₂ -H ₂ BDC	77.29	20.05	1.30	1.36] a	
UN9 - 4.2 NH ₂ -H ₂ BDC	71.30	22.57	3.06	3.07	1	
UN10 - 6.3 NH ₂ -H ₂ BDC	74.46	19.95	0.95	4.64]	

1 Table S3. Observed atomic percentage values of $UiO-66-NH_2$ samples from elemental 2 mapping.

18 Section S3: XPS analysis

3 Fig. S13. XPS analysis of acetic acid modulated sample. (a) survey, (b) C, (c) O, and (d) N.

3 Fig. S14. XPS analysis of formic acid modulated sample. (a) survey, (b) C, (c) O, and (d) N.

3 Fig. S15. XPS analysis of HCl modulated sample synthesized at 100°C. (a) survey, (b) C, (c) O, and 4 (d) N.

3 Fig. S16. XPS analysis of HCl modulated sample synthesized at 120°C. (a) survey, (b) C, (c) O, and 4 (d) N.

3 Fig. S17. XPS analysis of 4 equi. HCl modulated sample synthesized at 80°C. (a) survey, (b) C, (c) O, 4 and (d) N.

Fig. S18. XPS analysis of 12 equi. HCl modulated sample synthesized at 80°C. (a) survey, (b) C, (c)
O, and (d) N.

Fig. S19. XPS analysis of 8 equi. HCl modulated sample (8.4 NH₂-H₂BDC) synthesized at 80°C. (a)
survey, (b) C, (c) O, and (d) N.

Fig. S20. XPS analysis of 8 equi. HCl modulated sample (2.1 NH₂-H₂BDC) synthesized at 80°C. (a)
survey, (b) C, (c) O, and (d) N.

Fig. S21. XPS analysis of 8 equi. HCl modulated sample (4.2 NH₂-H₂BDC) synthesized at 80°C. (a)
survey, (b) C, (c) O, and (d) N.

Fig. S22. XPS analysis of 8 equi. HCl modulated sample (6.3 NH₂-H₂BDC) synthesized at 80°C. (a)
survey, (b) C, (c) O, and (d) N.

1 Table S4. Calculated chemical composition of elements in UiO-66-NH $_2$ MOFs from XPS analysis.

	Zı	r 3d		0 18			C 18	5		N	18
Sample	Zr3d _{5/2}	Zr3d _{3/2}	СООН	C=0	Zr-O	C=O	C=C	C-N	C-C	NH ₃ ⁺	NH ₂
					1	Modulator					
UN1	60.80	39.20	43.96	38.69	17.35	25.66	28.10	10.26	35.98	40.48	59.52
UN2	59.56	40.44	9.7	82.29	8.01	19.09	24.02	39.63	17.26	37.60	62.40
UN3	60.86	39.14	17.12	70.31	12.57	30.19	19.32	19.13	31.36	41.20	58.80
					Syntl	nesis Temperatı	ıre				
UN3	60.86	39.14	17.12	70.31	12.57	30.19	19.32	19.13	31.36	41.20	58.80
UN4	60.88	39.12	49.04	36.64	14.32	29.36	19.48	29.01	22.15	53.12	46.88
UN5	60.72	39.28	54.31	32.69	13	27.76	19.00	21.81	31.43	50.67	49.33
					НС	Concentration	n		•		
UN6	60.82	39.18	61.12	24.61	14.27	26.27	25.96	10.39	37.38	31.59	68.41
UN3	60.86	39.14	17.12	70.31	12.57	30.19	19.32	19.13	31.36	41.20	58.80
UN7	60.61	39.39	17.15	70.28	12.57	30.41	19.32	20.58	29.69	48.32	51.68
						Ligand Ratio					
UN8	61.01	38.99	54.62	31.69	13.69	27.00	7.64	55.92	9.44	62.46	37.54
UN9	60.96	39.04	73.09	15.06	11.85	27.54	11.58	49.53	11.35	44.79	55.21
UN10	60.87	39.13	44.98	40.78	14.24	28.68	18.78	14.80	37.74	44.80	55.20
UN3	60.86	39.14	17.12	70.31	12.57	30.19	19.32	19.13	31.36	41.20	58.80

1 Table S5. Atomic % ratio of Zr, C, O and N elements from XPS analysis

Sample Description	Atomic Percentage (%)				Stochiometric values			
Sample Description	Carbon	Oxygen	Zirconium	Nitrogen	C/Zr	O/Zr	N/Zr	
UN1 - Acetic acid	51.55	32.84	6.47	9.14	7.96	5.07	1.41	
UN2 - Formic acid	60.70	29.45	4.39	5.46	13.82	6.76	1.24	
UN6 - 4 Equi. HCl	52.32	33.96	5.89	7.83	8.88	5.76	1.32	
UN3 - 8 Equi. HCl	50.93	36.26	5.76	7.05	8.84	6.29	1.22	
UN7 - 12 Equi. HCl	50.44	36.10	5.99	7.47	8.42	6.02	1.24	
UN4 - 100°C	51.55	35.03	5.61	7.81	9.18	6.24	1.39	
UN5 -120°C	52.92	34.51	5.37	7.20	9.85	6.42	1.34	
UN8 - 2.1 NH ₂ -H ₂ BDC	52.68	37.53	6.17	3.62	8.53	6.08	0.58	
UN9 - 4.2 NH ₂ -H ₂ BDC	52.13	37.12	6.02	4.74	8.65	6.16	0.78	
UN10 - 6.3 NH ₂ -H ₂ BDC	50.93	36.31	5.75	7.01	8.85	6.31	1.21	

1 Section S5: Thermogravimetric analysis

4 Fig. S23. TGA curve of UiO-66-NH₂ samples to its synthesis condition: (a) various modulators,
5 (b) synthesis temperature, (c) HCl equivalence, and (d) ligand composition.

Sample d	lescription	Weight loss _{exp} %	N missed linkers	Final residue (wt. %)
	Acetic	195.95	1.63	36.04
Modulator 9 Equi	Formic	197.73	1.55	38.42
о Ециі.	HCl	194.17	1.71	34.50
	4 Equi. HCl	203.88	1.27	30.33
<i>Т-80°С</i>	8 Equi. HCl	194.17	1.71	34.50
	12 Equi. HCl	190.27	1.89	37.37
	80°C	194.17	1.71	34.50
8 Equi. HCl	100°C	193.04	1.77	33.97
	120°C	221.40	0.48	31.71

1 Table S6. Calculated weight loss and missed linker values from TGA curve.

1 Section S6: N₂ adsorption-desorption analysis

2

3 Table S7. Estimated BET surface area, pore volume and pore size of as-synthesized UiO-66- NH_2 samples.

4

Sample	description	BET surface area (m²/g)	Pore size (nm)	V _{total} pore volume (cm ³ /g)	Micropore volume (cm ³ /g)	Mesopore volume (cm ³ /g)	Micropores %	Mesopores %
Madulaton	Acetic	553	10.6	0.425264	0.224791	0.200473	53	47
Moaulalor 8 Faui	Formic	568	8.5	0.394475	0.234044	0.160431	59	41
o Lyui.	HCl	562	8.8	0.386850	0.240214	0.146636	62	38
	4 Equi. HCl	578	8.2	0.374873	0.254962	0.119911	68	32
<i>Т-80°С</i>	8 Equi. HCl	562	8.8	0.386850	0.240214	0.146636	62	38
	12 Equi. HCl	742	5.4	0.437024	0.321167	0.115857	74	26
	80°C	562	8.8	0.386850	0.240214	0.146636	62	38
8 Equi. HCl	100°C	562	6.4	0.342057	0.246694	0.095363	72	28
	120°C	499	5.5	0.288414	0.223562	0.064852	78	22
	2.1*+6.3#	675	6.5	0.417081	0.291388	0.125693	70	30
Linker	4.2* + 4.2#	623	7.3	0.401946	0.261394	0.140552	65	35
Composition	6.3* + 2.1#	574	7.7	0.376547	0.245985	0.130562	65	35
	8.4#	562	8.8	0.386850	0.240214	0.146636	62	38

5

 $6 \qquad * \quad NH_2-H_2BDC \qquad \qquad \# H_2BDC$

- 1 Section S7: p-nitrophenoxide calibration studies
- 2

4 Fig. S24. Calibration curve of p-nitrophenoxide for the concentration between 2.5 and
5 μM.