Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information

<i>x</i> (Sr ²⁺)	U _{iso}	Cell parameters (Å ³)	Cell Volume	R_{wp} (%), R_{p} (%), χ^{2}	
0	0.0082	a/b/c=4.792	110.023	10.62, 7.82, 1.65	
0.05	0.0092	a/b/c=4.808	111.17	9.52, 7.28, 1.42	
0.1	0.0103	a/b/c=4.847	113.839	9.17, 7.24, 1.35	
0.15	0.0134	a/b/c=4.857	114.61	7.22, 5.58, 1.19	
0.2	0.0146	a/b/c=4.871	115.51	8.36, 6.32, 1.19	

Table S1. Parameters of $Ca_{(1-x)}Sr_xO:Eu^{2+}$ (*x* = 0-0.2).

 Table S2. Main parameters of Eu²⁺ activated NIR phosphors.

Compounds	$\lambda_{ex}(nm)$	λ _{em} (nm)	FWHM (nm)	IQE (%)	I _{425 K} (%)	Ref
Ba ₃ Lu(BO ₃) ₃	450	720	197	/	22.5%	[8]
K ₃ LuSi ₂ O ₇	460	740	160	15%	59%	[21]
Ba _{1.7} Sr _{0.3} Ga ₄ O ₈	450	775	230	20%	61%	[22]
SrBaSc _{0.5} Ga _{1.5} O ₅	440	728	234	/	/	[24]
$Sr_{0.5}Ba_{0.5}Y_2O_4$	450	773	210	37%	90%	[25]
K ₃ ScSi ₂ O ₇	465	735	170	/	70.4%	[26]
Ca ₃ Sc ₂ Si ₃ O ₁₂	520	840	170	/	/	[28]
Ca _{0.8} Sr _{0.2} O	467	783	156	36.3	20.2%	This work

Figure S1. Crystal structure of CaO.

Figure S2. Difference Rietveld plot of $Ca_{(1-x)}Sr_xO:0.1\%Eu^{2+}$: (a) x = 0; (b) x = 0.05; (c) x = 0.1; (d) x = 0.15

Figure S3.(a) XRD cards of CaO: yEu^{2+} (y = 0.08%-0.4%). (b) PL spectra of CaO: yEu^{2+}

Figure S4. (a) Normalized PLE spectra of $Ca_{(1-x)}Sr_xO:0.1\%Eu^{2+}$. (b) PL spectra of $Ca_{(1-x)}Sr_xO:0.1\%Eu^{2+}$.

Figure S5. (a) Temperature-dependent PL spectra of $Ca_{0.8}Sr_{0.2}O:0.1\%Eu^{2+}$. (b) Temperature dependent normalized integrated PL intensities excited at 467nm.

Figure S6. Integrated intensity of $Ca_{0.8}Sr_{0.2}O:Eu^{2+}$ for IQY measurements (Insert: The total integral area is S1 and the integrated area before 850nm is S2).

Figure S7. Band gap calculation for $Ca_{(1-x)}Sr_xO$ (x = 0-0.2). (a) x = 0; (b) x = 0.05; (c) x = 0.1; (d) x = 0.15. (e) x = 0.2.