Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information

Photoinduced decarboxylative radical cascade alkylation/cyclization

of benzimidazole derivatives with aliphatic carboxylic acid via

ligand-to-iron charge transfer.

Yan Xu \ddagger , Chen
Jing Wang \ddagger , Chun Lv, Jianjie Wang, Qian Zhang, Jiayang Wang, Run-Pu
 Shen, Bin Sun \ast and Can Jin \ast

Page S1	General Information		
Page S2-S3	Preparation of Substrate		
Page S4	General procedure for radical cascade cyclization.		
Page S4	Gram-scale synthesis		
Page S5	Late-stage modification		
Page S6	Optimization of the reaction conditions		
Page S7	Control experiments		
Page S8	KI-starch test		
Page S9-S10	UV-vis experiments		
Page S11-S12	GC-MS experiments		
Page S13-S25	Characterization Data for the products		
Page S26-S60	Copies of NMR Spectra		

I. General Information

¹H NMR spectra were recorded at 400 MHz using TMS as internal standard, ¹³C NMR spectra were recorded at 100 MHz using TMS as internal standard. All chemical shifts were reported as δ values (ppm) relative to TMS and observed coupling constants (*J*) are given in Hertz (Hz). All NMR solvents used in this study are CDCl₃. GC-Mass spectra were recorded on Agilent GC-MS (8890-7250). High-resolution mass spectra were obtained with a Bruker Impact II UHR-QTOF.by ESI on a TOF mass analyzer. The UV-Vis measurements were carried out using a UV-Vis spectrophotometer (ULN 2209003, MAPADA P6). The thin layer chromatography (TLC) was performed using glass plates covered with SiO₂. Spots were visualized by UV light irradiation or by staining of the TLC plate with iodine. Unless otherwise indicated, all reactions were carried out under air atmosphere at room temperature with magnetic stirring. All reagents were purchased from commercial source and without prior purification. Column chromatography was performed on silica gel (200-300 mesh) and the elution was performed with *n*-hexane/ethyl acetate.

The Material of the Irradiation Vessel

Manufacturer: Shenzhen Kelo Light Co., Ltd.

Irradiation wavelength: 400 nm

Figure S1. light setup

II. Preparation of substrate

General procedure for the synthesis of N-sulfoylpiperidinic acid derivatives¹

Piperidine 4-carboxylic acid (646 mg, 5.00 mmol, 1.0 eq) was stirred with potassium carbonate (970 mg, 7.0 mmol, 1.4 eq) in water (5 mL) at room temperature until a clear solution was obtained. Solution of benzene sulfonyl chloride (6.5 mmol, 1.3 equiv) in THF (5 mL) was added with the aid of a dropping funnel within 15 min. After stirring for 15 min, the cooling bath was removed and the reaction mixture was stirred for 24 h. After that, the reaction mixture was diluted with EtOAc (20 mL) and 2 N HCl (20 mL). Then, poured into an extraction funnel, the organic phase was washed with brine (1 x 20 mL), dried over Na_2SO_4 and concentrated under reduced pressure. Dry the residues in high vacuo to obtain the corresponding product.

General procedure for the synthesis of hyodeoxycholic acid derivative.²

Hyodeoxycholic acid (20.0g, 51mmol, 1 equiv.) was added into methanol (100 mL) and stirred at room temperature for 5 min. After all dissolved, sulfuric acid (2.5 mL) was slowly added into the reaction solution and the reaction was carried out for 18 hours at room temperature under nitrogen atmosphere. The mixture was concentrated to obtain yellow oil, which was extracted by ethyl acetate. After that, saturated NaHCO₃ solution was added to adjust the pH to neutral and washed combined organic layers with brine. The organic phase was concentrated to obtain 1 (20.7g,99%).

1 (10.2g, 25 mmol, 1 equiv.), TsCl (14.1g, 75 mmol, 3 equiv.), DMAP (0.305 g, 2.5 mmol, 0.1 equiv.) were dissolved in pyridine (50 mL). The mixture was placed in an ice bath and stirred for 48 hours under nitrogen atmosphere. Subsequently, 250 mL 10 % HCl was added to the solution and then the white solid was precipitated, filtered under reduced pressure. The filter cake was washed with 5% HCl to neutral, and dried to obtain 2 (17.85 g, 99%).

2 (7.1g, 10 mmol, 1 equiv.), KOH (0.729g, 13 mmol, 1.3 equiv.) was dissolved in MeOH (50 mL). The mixture was stirred for 16 h at room temperature. Concentrated under reduced pressure The mixture was purified by silica gel column to obtain **3** (6.8g, 98%).

General procedure for the synthesis of N-sulfoylpiperidinic acid derivatives^{3,4}

Add o-phenylenediamine (1) (10 mmol, 1.0 equiv.), $Na_2S_2O_5$ (15 mmol, 1.5 equiv.), and ethanol (30 mL) to a 100 mL round-bottomed flask. Then introduce benzaldehyde (2) (10 mmol, 1.0 equiv.) into the reaction mixture, and heat it to 78 °C under reflux conditions. Upon completion of the reaction, cool the reaction mixture to room temperature and pour it into ice water, leading to the formation of yellow solid precipitates. Filter the precipitate and wash it with an appropriate amount of water to obtain the crude product of 2-arylbenzimidazole (3). This crude product can be utilized directly for subsequent reactions without requiring further purification. If solid precipitates three times. Combine the organic layers, dry them with anhydrous sodium sulfate, filter, and concentrate the solution under reduced pressure. Purify the crude product by silica gel column chromatography using petroleum ether/ethyl acetate (5:1) as the eluent.

The 100 mL round-bottom flask was cooled to 0°C, and a solution containing crude product (**3**) (5 mmol, 1.0 equiv.), DMAP (2.0 mmol, 0.4 equiv.), and Et₃N (10 mmol, 2.0 equiv.) in DCM (30 mL) was prepared. Subsequently, methyl acrylyl chloride (10 mmol, 2.0 equiv.) was added dropwise with stirring to the reaction mixture. Once the addition was complete, the reaction mixture was allowed to warm to room temperature and stirred while monitoring the progress via TLC analysis. Following completion of the reaction, the mixture was subjected to extraction thrice with dichloromethane and saturated NH4Cl solution. The combined organic layer was then dried over Na2SO4, concentrated under reduced pressure, and purified via silica gel column chromatography, yielding the corresponding white solid product (**4**).

III. General procedure for decarboxylative cascade cyclization.

Procedure : To a dried 8 mL vial was added **1** (0.3 mmol), acid (**2**) (0.6 mmol), $Fe(NO_3)_3 \cdot 9H_2O$ (10 mol %), in 3 mL CH₃CN under air atmosphere. The resulting solution was stirred under 400 nm LED light for 10 h (25 °C). After that, the reaction mixture was diluted with DCM. Then, poured into an extraction funnel, the organic phase was dried over Na₂SO₄ and concentrated under reduced pressure. Purification by flash column chromatography with PE/EA as an eluent gave the product.

IV. Gram-scale synthesis.

Procedure : In a dry 100 mL round-bottom flask was added 2-methyl-1-(2-phenyl-1Hbenzo[d]imidazol-1-yl) prop-2-en-1-one (5 mmol), pivalic acid (10 mmol), $Fe(NO_3)_3 \cdot 9H_2O(10 mol\%)$ in 20 mL CH₃CN under air atmosphere. The resulting solution was stirred for 12 h at room temperature under 400 nm LED lights. On completion, the resulting solution was diluted with H₂O (50 mL) and DCM (30 mL). Then, poured into an extraction funnel, the organic phase was dried over Na₂SO₄ and concentrated under reduced pressure. Purification by flash column chromatography with PE/EA (20/1) as eluent gave the target compound as white solid (2.229 g, 70% yield). (Figure S2)

Figure S2. gram scale synthesis

V. Late-stage modification.

Procedure: In a dry 100 mL round-bottom flask was added **3aa** (1mmol), LiAlH₄ (2 mmol) in 10 mL THF under air atmosphere. The resulting solution was stirred for 45 min at 0°C. On completion, the resulting solution was diluted with H₂O (20 mL) and EA (20 mL). Then, poured into an extraction funnel, the organic phase was dried over Na₂SO₄ and concentrated under reduced pressure to give the **3bh** as white solid (310.8 mg, 97% yield).

3bh (310.8 mg, 0.97 mmol), 4-tert-butylbenzoic acid (178.2 mg, 1 mmol), DCC (412.2 mg, 2 mmol,), DMAP (12 mg, 0.1mmol) was dissolved in DCM (15 mL). The mixture was stirred for 5 h at room temperature. Concentrated under reduced pressure The mixture was purified by silica gel column to obtain **3bi** (433.6 mg, 93%).

VI. Optimization of the reaction conditions

 Table S1. Iron salts and additive screening

	$\begin{array}{c} & & Fe(NO_3)_3 \cdot 9H_2O (10 \text{ mol}) \\ \hline & & & \\ & & & & \\ & &$	
Entry	Deviation from standard conditions ^a	Yield ^b (%)
1	None	84
2	$Fe(acac)_3$ as PC	62
3	Fe $(SO_4)_3$ as PC	25
4	Fe $(OTf)_3$ as PC	33
5	20 mol % of Fe (NO ₃) ₃ ·9H ₂ O	83
6	t-BuOK (20 mol %) as additive	80
7	K_2CO_3 (20 mol %) as additive	75
8	Et_3N (20 mol %) as additive	29
9	100 mol % of <i>t</i> - BuONa	72

^{*a*} Conditions: 1a (0.4 mmol), 2a (0.2 mmol.), Fe (NO₃)₃ · 9H₂O (10 mol%), additive (20 mol%), CH₃CN (2 mL), room temperature, air atmosphere, 400 nm LEDs, 10 h. b Determined by 1HNMR spectroscopy using 1,3,5-trimethoxybenzene as internal standard.

 Table S2. Other parameter screening

	$Fe(NO_3)_3 \cdot 9H_2O (10 \text{ mol}\%)$ 400 nm LEDs $CH_3CN, air, r.t, 10h$ $1a$ $2a$	A CHANGE AND A CHA
Entry	Deviation from standard conditions ^a	Yield ^{<i>b</i>} (%)
1	None	84
2	DCE as solvent	42
3	DMF as solvent	36
4	EtOAc as solvent	31
5	370 nm light instend of 100W Blue LEDs	32
6	435 nm light instend of 100W Blue LEDs	52
7	475 nm light instend of 100W Blue LEDs	24
8	Dark conditions	n.d.
9	No Fe $(NO_3)_3 \cdot 9H_2O$	n.d.
10	Nitrogen atmosphere	trace

^{*a*} Conditions: 1a (0.4 mmol), 2a (0.2 mmol.), Fe (NO₃)₃ · 9H₂O (10 mol%), additive (20 mol %), CH₃CN (2 mL), room temperature, air atmosphere, 400 nm LEDs, 10 h. b Determined by 1HNMR spectroscopy using 1,3,5-trimethoxybenzene as internal standard. n.d. No detected.

VII. Control experiments

The reaction was completely inhibited by free radical inhibitors, and the radical adducts was detected by HRMS ($[M+H]^+=214.2144$)

Figure S3. HRMS data of TEMPO adduct

VIII. KI-starch test for the detection of hydrogen peroxide (H_2O_2) in the reaction⁵

It was anticipated that H_2O_2 may be one of the reasonable by-products of the photo-induced decaboxylative cascade reaction, which was confirmed by KI/starch test.

After the irradiation of light on reaction mixture, the aqueous solution of starch-potassium iodide was added and the solution turns dark blue, which confirms the formation of H_2O_2 . (Figure S4)

Solution A: KI (0.05M), starch (4 mg/mL), and glacial acetic acid (0.5 M) in 2 mL H_2O **Solution B:** Reaction mixture after irradiation.

Solution C: Add 100uL solution B to solution A.

Figure S4 KI-starch test

IX. UV-visible absorption Spectra⁶

UV-Vis experiments were performed to analyse the ligand-to-metal-charge-transfer (LMCT) process between Iron salt and alkyl carboxylic acids.

Preparation of a stock solution (solution A): In a glass vial equipped with a teflon-coated stirring bar and a septum, $Fe(NO_3)_3 \cdot 9H_2O$ (0.03 mmol) were dissolved in MeCN (3 mL). Dilute 66 μ L of the above solution to 6 mL to obtain solution A.

Preparation of a stock solution (solution B): In a glass vial equipped with a teflon-coated stirring bar and a septum, $Fe(NO_3)_3 \cdot 9H_2O$ (0.03 mmol) and Pivalic acid (0.3 mmol) were dissolved in MeCN (3 mL). Dilute 200 µL of the above solution to 6 mL to obtain solution B.

UV-Visible absorption spectra of solution A

Figure S4 UV-Visible spectra of a solution of $Fe(NO_3)_3$ ·9H₂O without acid after irradiation with 400 nm LED light.

As shown in Figure S4, there is little change in absorbance as the irradiation time increases without the addition of acid.

UV-Visible absorption spectra of solution B

Figure S4 UV-Visible spectra of a solution of Fe(NO₃)₃·9H₂O with pivalic acid after irradiation with 400 nm LED light.

When the 400 nm LED was switched-on, the absorbance of Fe^{II} ($\lambda_{absorb}\approx$ 400-600 nm) gradually increases, which demostrated that in the presence of carboxylic acid, the Fe^{III} was reduced to Fe^{II} after gradually increasing the illumination time. Concurrently, Fe^{II} is gradually oxidized to Fe^{III} in the presence of oxygen, which accounts for the relatively slow increase in absorbance.

X. GC-MS experiment.

Unknown: +EI Scan (rt: 1.56-1.57 min, 3 scans) Frag=70.0V wjy-CO2_2.D Subtract Compound in Library Factor = 139

Hit 1 : Carbon dioxide CO2; MF: 879; RMF: 895; Prob 81.4%; CAS: 124-38-9; Lib: mainlib; ID: 17540.

The substance identified by gas chromatography-mass spectrometry analysis at RT=1.56-1.57 is carbon dioxide (CO₂).

Preparation of a stock solution: In a glass vial equipped with a teflon-coated stirring bar and a septum, 2-methyl-1-(2-phenyl-1H-benzo[d]imidazol-1-yl)prop-2-en-1-one (0.3 mmol, 1.0 equiv.) Fe(NO₃)₃·9H₂O (0.03 mmol, 10 mol%) and Pivalic acid (3 mmol, 10.0 equiv.) were dissolved in MeCN (3 mL).

Reference:

- 1 P. H. Huy and C. Mbouhom, Chem. Sci., 2019, 10, 7399–7406.
- 2 M. D. Hill, M.-J. Blanco, F. G. Salituro, Z. Bai, J. T. Beckley, M. A. Ackley, J. Dai, J. J. Doherty, B. L. Harrison, E. C. Hoffmann, T. M. Kazdoba, D. Lanzetta, M. Lewis, M. C. Quirk and A. J. Robichaud, *J. Med. Chem.*, 2022, 65, 9063–9075.
- 3 D. R. Stuart, E. Villemure and K. Fagnou, J. Am. Chem. Soc., 2007, 129, 12072–12073.
- 4 A. Kamal, M. Kashi Reddy, T. B. Shaik, Rajender, Y. V. V. Srikanth, V. Santhosh Reddy, G. Bharath Kumar and S. V. Kalivendi, *European Journal of Medicinal Chemistry*, 2012, **50**, 9–17.
- 5 S. Singh, N. Dagar and S. R. Roy, Chem. Commun., 2022, 58, 3831-3834.
- 6 Y. Zhang, J. Qian, M. Wang, Y. Huang and P. Hu, Org. Lett., 2022, 24, 5972–5976.

XI. Characterization Data for the products

3aa

5-methyl-5-neopentylbenzo [4,5] imidazo[2,1-a] isoquinolin-6(5H)-one

Purification by flash column chromatography (eluent: PE/EA = 20/1) gave the title compound as white solid (78.3 mg, 82% yield).

¹**H NMR (400 MHz, Chloroform-***d***)** δ 8.52 (d, J = 8.8 Hz, 1H), 8.42 (d, J = 7.2 Hz, 1H), 7.85 (dd, J = 7.7, 1.5 Hz, 1H), 7.59 – 7.41 (m, 5H), 2.66 (d, J = 14.3 Hz, 1H), 2.19 (d, J = 14.3 Hz, 1H), 1.73 (s, 3H), 0.56 (s, 9H).

¹³C NMR (101 MHz, Chloroform-d) δ 173.40, 149.76, 144.08, 142.00, 131.45, 131.13, 127.60, 127.53, 125.92, 125.85, 125.51, 122.44, 119.72, 115.79, 55.33, 47.68, 33.03, 32.01, 30.78.
(Known compound: Chem Asian J. 2023, e202300028 (3 of 5)).

3-(tert-butyl)-5-methyl-5-neopentylbenzo [4,5] imidazo[2,1-a] isoquinolin-6(5H)-one

Purification by flash column chromatography (eluent: PE/EA = 20/1) gave the title compound as white solid (94.4 mg, 84% yield).

¹**H NMR (400 MHz, Chloroform-***d*) δ 8.46 – 8.38 (m, 2H), 7.86 – 7.81 (m, 1H), 7.57 – 7.50 (m, 2H), 7.49 – 7.40 (m, 2H), 2.68 (d, *J* = 14.4 Hz, 1H), 2.20 (d, *J* = 14.4 Hz, 1H), 1.73 (s, 3H), 1.40 (s, 9H), 0.55 (s, 9H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 173.79, 154.55, 149.90, 144.05, 141.37, 131.37, 125.80, 125.72, 125.30, 124.97, 124.52, 119.62, 119.54, 115.75, 55.08, 47.82, 35.22, 33.27, 31.98, 31.09, 30.83. HRMS: C₂₅H₃₁N₂O [M+H] ⁺; calculated: 375.2436, found: 375.2433.

3ac

3-methoxy-5-methyl-5-neopentylbenzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one

Purification by flash column chromatography (eluent: PE/EA = 20/1) gave the title compound as white solid (84.7 mg, 81% yield).

¹**H NMR (400 MHz, Chloroform-***d*) δ 8.45 (dd, J = 8.7, 1.7 Hz, 1H), 8.38 (d, J = 7.7 Hz, 1H), 7.80 (d, J = 7.7 Hz, 1H), 7.42 (dt, J = 15.3, 7.5 Hz, 2H), 7.09 – 6.97 (m, 2H), 3.93 (s, 3H), 2.64 (d, J = 14.6 Hz, 1H), 2.14 (d, J = 13.6 Hz, 1H), 1.72 (s, 3H), 0.59 (s, 9H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 173.44, 162.08, 149.93, 144.16, 144.06, 131.33, 127.83, 125.77, 125.04, 119.30, 115.65, 115.41, 113.57, 113.13, 55.56, 55.41, 47.79, 33.24, 32.07, 30.83. (Known compound: Chem. Commun, 2019, 55, 2861-2864).

3ad

5-methyl-5-neopentyl-6-oxo-5,6-dihydrobenzo[**4,5**]**imidazo**[**2,1-a**]**isoquinoline-3-carbonitrile** Purification by flash column chromatography (eluent: PE/EA = 10/1) gave the title compound as white solid (79.3 mg, 77% yield).

¹**H NMR (400 MHz, Chloroform-***d*) δ 8.62 (d, *J* = 8.1 Hz, 1H), 8.46 – 8.37 (m, 1H), 7.91 – 7.81 (m, 2H), 7.75 (d, *J* = 8.1 Hz, 1H), 7.55 – 7.47 (m, 2H), 2.70 (d, *J* = 14.5 Hz, 1H), 2.16 (d, *J* = 14.5 Hz, 1H), 1.75 (s, 3H), 0.56 (s, 9H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 171.98, 147.66, 143.95, 142.87, 131.69, 131.38, 130.71, 126.63, 126.41, 126.35, 120.30, 118.09, 115.95, 114.46, 55.38, 47.66, 32.88, 32.08, 30.83.

(Known compound: Chem. Commun, 2019, 55, 2861-2864).

3-bromo-5-methyl-5-neopentylbenzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one

Purification by flash column chromatography (eluent: PE/EA = 20/1) gave the title compound as white solid (95.4 mg, 80% yield).

¹**H NMR (400 MHz, Chloroform-***d*) δ 8.45 – 8.36 (m, 2H), 7.86 (d, *J* = 6.8 Hz, 1H), 7.71 – 7.61 (m, 2H), 7.50 – 7.44 (m, 2H), 2.67 (d, *J* = 14.6 Hz, 1H), 2.15 (d, *J* = 14.6 Hz, 1H), 1.73 (s, 3H), 0.59 (s, 9H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 172.57, 148.83, 143.86, 143.53, 131.18, 130.77, 127.50, 126.19, 126.08, 125.95, 121.16, 119.71, 115.84, 55.32, 47.69, 32.98, 32.09, 30.84.

(Known compound: Synlett, 2023, 34, 143-148).

3af

5-methyl-5-neopentyl-3-phenylbenzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one

Purification by flash column chromatography (eluent: PE/EA = 20/1) gave the title compound as white solid (94.7 mg, 80% yield).

¹**H NMR (400 MHz, Chloroform-***d***)** δ 8.61 (d, *J* = 8.6 Hz, 1H), 8.43 (dd, *J* = 7.7, 1.6 Hz, 1H), 7.91 – 7.86 (m, 1H), 7.75 – 7.72 (m, 2H), 7.69 – 7.66 (m, 2H), 7.54 (dd, *J* = 8.3, 6.6 Hz, 2H), 7.50 – 7.44 (m, 3H), 2.72 (d, *J* = 14.4 Hz, 1H), 2.28 (d, *J* = 14.4 Hz, 1H), 1.79 (s, 3H), 0.62 (s, 9H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 173.46, 149.60, 144.11, 142.40, 140.07, 131.38, 129.08, 128.33, 127.21, 126.76, 126.54, 126.29, 126.02, 125.64, 121.06, 119.62, 115.83, 55.30, 47.87, 33.21, 32.10, 30.91.

HRMS: C₂₇H₂₇N₂O [M+H] ⁺; calculated: 395.2123, found: 395.2125.

1,5-dimethyl-5-neopentylbenzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one

Purification by flash column chromatography (eluent: PE/EA = 20/1) gave the title compound as white solid (80.8 mg, 81% yield).

¹**H NMR (400 MHz, Chloroform-***d***)** δ 8.49 – 8.43 (m, 1H), 7.91 – 7.85 (m, 1H), 7.48 – 7.44 (m, 2H), 7.43 – 7.40 (m, 2H), 3.10 (s, 3H), 2.65 (d, *J* = 14.4 Hz, 1H), 2.18 (d, *J* = 14.4 Hz, 1H), 1.74 (s, 3H), 0.56 (s, 9H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 173.69, 150.03, 144.18, 143.09, 139.69, 130.88, 130.60, 129.84, 125.61, 125.59, 125.55, 121.09, 120.02, 115.91, 55.77, 47.52, 33.63, 32.06, 30.80, 24.82. HRMS: C₂₂H₂₅NO [M+H] ⁺; calculated: 333.1967, found: 333.1966.

1-chloro-5-methyl-5-neopentylbenzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one Purification by flash column chromatography (eluent: PE/EA = 20/1) gave the title compound as white solid (80.5 mg, 76% yield).

¹**H NMR (400 MHz, Chloroform-***d***)** δ 8.50 – 8.39 (m, 1H), 8.01 – 7.91 (m, 1H), 7.63 – 7.37 (m, 5H), 2.67 (d, J = 14.4 Hz, 1H), 2.17 (d, J = 14.4 Hz, 1H), 1.75 (s, 3H), 0.57 (s, 9H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 172.57, 147.11, 144.94, 143.97, 133.44, 131.17, 130.60, 130.30, 126.44, 126.26, 125.88, 120.70, 115.84, 55.90, 47.84, 33.49, 32.05, 30.78.

HRMS: C₂₁H₂₂ClN₂O [M+H] ⁺; calculated: 353.1421, found: 353.1418.

3ai

2-bromo-5-methyl-5-neopentylbenzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one

Purification by flash column chromatography (eluent: PE/EA = 20/1) gave the title compound as white solid (94.1 mg, 79% yield).

¹**H NMR (400 MHz, Chloroform-***d*) δ 8.67 (d, *J* = 2.2 Hz, 1H), 8.43 – 8.36 (m, 1H), 7.88 – 7.82 (m, 1H), 7.65 (dd, *J* = 8.5, 2.2 Hz, 1H), 7.51 – 7.43 (m, 2H), 7.40 (d, *J* = 8.5 Hz, 1H), 2.65 (d, *J* = 14.4 Hz, 1H), 2.14 (d, *J* = 14.4 Hz, 1H), 1.70 (s, 3H), 0.57 (s, 9H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 172.80, 148.28, 143.84, 140.78, 134.11, 131.37, 129.33, 128.52, 126.14, 125.99, 124.22, 121.66, 119.93, 115.84, 55.13, 47.58, 32.98, 32.06, 30.89.

HRMS: C₂₁H₂₂BrN₂O [M+H] ⁺; calculated: 397.0916, found: 397.0912.

3aj

7-methyl-7-neopentylbenzo[g]benzo[4,5]imidazo[2,1-a]isoquinolin-6(7H)-one

Purification by flash column chromatography (eluent: PE/EA = 20/1) gave the title compound as white solid (88.4 mg, 80% yield).

¹**H NMR (400 MHz, Chloroform-***d*) δ 8.69 (d, *J* = 8.6 Hz, 1H), 8.63 (d, *J* = 8.5 Hz, 1H), 8.47 – 8.42 (m, 1H), 8.01 – 7.88 (m, 3H), 7.66 – 7.57 (m, 2H), 7.53 – 7.45 (m, 2H), 3.10 (d, *J* = 14.7 Hz, 1H), 2.89 (d, *J* = 14.7 Hz, 1H), 2.14 (s, 3H), 0.43 (s, 9H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 174.85, 150.27, 144.29, 138.39, 135.99, 131.60, 131.25, 130.25, 129.76, 127.01, 126.91, 126.37, 126.11, 125.66, 122.69, 121.04, 119.75, 115.84, 53.43, 50.14, 32.30, 30.88, 30.15.

HRMS: C₂₅H₂₅N₂O [M+H] ⁺; calculated: 369.1967, found: 369.1963.

5-methyl-5-neopentylbenzo[4,5]imidazo[2,1-a][2,6]naphthyridin-6(5H)-one

Purification by flash column chromatography (eluent: PE/EA = 10/1) gave the title compound as yellow oil (70.0 mg, 72% yield).

¹**H NMR (400 MHz, Chloroform-***d***)** δ 8.87 (s, 1H), 8.71 (d, *J* = 5.2 Hz, 1H), 8.41 (dd, *J* = 6.0, 3.3 Hz, 1H), 8.28 (d, *J* = 5.2 Hz, 1H), 7.89 (dd, *J* = 6.0, 3.2 Hz, 1H), 7.50 (dd, *J* = 6.1, 3.2 Hz, 2H), 2.70 (d, *J* = 14.5 Hz, 1H), 2.27 (d, *J* = 14.5 Hz, 1H), 1.78 (s, 3H), 0.56 (s, 9H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 172.28, 149.83, 148.19, 147.25, 143.88, 136.00, 131.43, 129.20, 126.72, 126.34, 120.44, 118.25, 115.97, 54.93, 46.42, 32.55, 32.04, 30.86.

HRMS: C₂₀H₂₂N₃O [M+H] ⁺; calculated: 320.1763, found: 320.1760.

3al

4-methyl-4-neopentylbenzo[4,5]imidazo[1,2-a]thieno[2,3-c]pyridin-5(4H)-one

Purification by flash column chromatography (eluent: PE/EA = 20/1) gave the title compound as yellow oil (74.0 mg, 76% yield).

¹**H NMR (400 MHz, Chloroform-***d***)** δ 8.39 – 8.33 (m, 1H), 7.82 – 7.76 (m, 1H), 7.59 (dd, J = 5.0, 0.8 Hz, 1H), 7.46 – 7.40 (m, 2H), 7.13 (dd, J = 5.0, 0.9 Hz, 1H), 2.61 (d, J = 14.5 Hz, 1H), 2.07 (d, J = 14.3 Hz, 1H), 1.66 (s, 3H), 0.62 (s, 9H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 173.98, 148.38, 146.64, 143.82, 130.81, 130.30, 126.87, 125.85, 125.51, 122.93, 119.55, 115.29, 55.03, 47.90, 31.96, 31.92, 30.58.

HRMS: C₁₉H₂₀N₂OSNa [M+Na] ⁺; calculated: 347.1194, found: 347.1192.

3am

9,10-dichloro-5-methyl-5-neopentylbenzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one

Purification by flash column chromatography (eluent: PE/EA = 20/1) gave the title compound as white solid (75.8 mg, 74% yield).

¹**H NMR (400 MHz, Chloroform-***d*) δ 8.54 (s, 1H), 8.47 (d, *J* = 7.9 Hz, 1H), 7.91 (s, 1H), 7.61 – 7.50 (m, 3H), 2.64 (d, *J* = 14.4 Hz, 1H), 2.20 (d, *J* = 14.4 Hz, 1H), 1.73 (s, 3H), 0.55 (s, 9H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 173.22, 151.34, 143.45, 142.14, 131.81, 130.37, 129.98, 129.37, 127.85, 127.68, 126.15, 121.72, 120.88, 117.16, 55.39, 47.75, 33.02, 32.06, 30.79. HRMS: C₂₁H₂₁Cl₂N₂O [M+H] ⁺; calculated: 387.1031, found: 387.1028.

3an

5,9,10-trimethyl-5-neopentylbenzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one

Purification by flash column chromatography (eluent: PE/EA = 20/1) gave the title compound as white solid (81.1 mg, 78% yield).

¹**H NMR (400 MHz, Chloroform-***d*) δ 8.48 (d, *J* = 7.7 Hz, 1H), 8.19 (s, 1H), 7.61 (s, 1H), 7.54 – 7.51 (m, 2H), 7.47 (ddd, *J* = 8.3, 5.3, 3.2 Hz, 1H), 2.64 (d, *J* = 14.4 Hz, 1H), 2.45 (s, 3H), 2.43 (s, 3H), 2.17 (d, *J* = 14.4 Hz, 1H), 1.72 (s, 3H), 0.55 (s, 10H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 173.39, 149.02, 142.40, 141.73, 134.88, 134.86, 130.84, 129.72, 127.55, 127.53, 125.70, 122.58, 119.89, 116.09, 55.30, 47.55, 33.01, 32.02, 30.79, 20.56, 20.49. HRMS: C₂₃H₂₇N₂O [M+H] ⁺; calculated: 347.2123, found: 347.2120.

3ao

5-methyl-5-neopentyl-12-phenylindolo[2,1-a]isoquinolin-6(5H)-one

Purification by flash column chromatography (eluent: PE/EA = 20/1) gave the title compound as white solid (98.0 mg, 83% yield).

¹**H NMR (400 MHz, Chloroform-***d***)** δ 8.76 (d, J = 8.5 Hz, 1H), 7.62 – 7.53 (m, 5H), 7.51 – 7.43 (m, 3H), 7.36 – 7.26 (m, 3H), 7.07 – 7.00 (m, 1H), 2.67 (d, J = 14.3 Hz, 1H), 2.14 (d, J = 14.3 Hz, 1H), 1.78 (s, 3H), 0.65 (s, 9H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 173.76, 139.32, 134.33, 134.22, 132.43, 130.34, 129.73, 129.28, 128.09, 127.84, 127.73, 126.46, 125.80, 125.17, 124.90, 124.56, 120.15, 119.35, 116.98, 55.87, 46.90, 32.98, 32.06, 31.65, 30.85, 29.77, 22.72, 14.20.

HRMS: C₂₈H₂₈NO [M+H] ⁺; calculated: 394.2171, found: 394.2164.

3ap

5-(2,2-dimethyl butyl)-5-methyl benzo [4,5] imidazo [2,1-a] isoquinolin-6(5H)-one and a statistical statistical

Purification by flash column chromatography (eluent: PE/EA = 20/1) gave the title compound as white solid (80.7 mg, 81% yield).

¹**H NMR (400 MHz, Chloroform-***d***)** δ 8.52 (d, *J* = 7.8 Hz, 1H), 8.42 (d, *J* = 6.8 Hz, 1H), 7.86 (d, *J* = 6.5 Hz, 1H), 7.58 - 7.42 (m, 5H), 2.63 (d, *J* = 14.4 Hz, 1H), 2.18 (d, *J* = 14.4 Hz, 1H), 1.73 (s, 3H), 0.96 (dhept, *J* = 28.1, 7.1 Hz, 2H), 0.71 (t, *J* = 7.5 Hz, 3H), 0.50 (s, 3H), 0.39 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 173.52, 149.79, 144.04, 142.16, 131.44, 131.12, 127.60, 127.54, 125.89, 125.87, 125.52, 122.33, 119.70, 115.80, 53.14, 47.50, 36.56, 34.45, 33.25, 27.57, 26.91, 8.25.

(Known compound: J. Org. Chem. 2021, 86, 9055-9066).

3aq

5-methyl-5-propylbenzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one

Purification by flash column chromatography (eluent: PE/EA = 20/1) gave the title compound as white solid (54.4 mg, 62% yield).

¹**H NMR (400 MHz, Chloroform-***d***)** δ 8.50 (dd, *J* = 8.1, 1.5 Hz, 1H), 8.43 – 8.36 (m, 1H), 7.88 – 7.81 (m, 1H), 7.63 – 7.56 (m, 1H), 7.54 – 7.43 (m, 4H), 2.41 (ddd, *J* = 13.4, 11.7, 4.8 Hz, 1H), 1.98 (ddd, *J* = 13.4, 12.1, 4.4 Hz, 1H), 1.76 (s, 3H), 1.05 – 0.95 (m, 1H), 0.88 (dddd, *J* = 15.7, 8.5, 5.6, 1.6 Hz, 1H), 0.76 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 173.40, 149.92, 144.11, 141.93, 131.81, 131.33, 127.59, 126.03, 125.83, 125.81, 125.48, 123.05, 119.76, 115.68, 49.50, 45.56, 28.62, 18.49, 13.97.
(Known compound: Chem. Commun, 2019, 55, 2861-2864).

3ar

5-isobutyl-5-methylbenzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one

Purification by flash column chromatography (eluent: PE/EA = 20/1) gave the title compound as white solid (71.2 mg, 78% yield).

¹**H** NMR (400 MHz, Chloroform-*d*) δ 8.52 (d, *J* = 8.0 Hz, 1H), 8.41 (dd, *J* = 7.4, 1.8 Hz, 1H), 7.85 (dd, *J* = 6.6, 2.4 Hz, 1H), 7.61 – 7.54 (m, 1H), 7.52 – 7.41 (m, 4H), 2.47 (dd, *J* = 14.0, 8.3 Hz, 1H), 2.09 (dd, *J* = 14.1, 5.2 Hz, 1H), 1.70 (s, 3H), 1.39 – 1.29 (m, 1H), 0.64 (d, *J* = 6.7 Hz, 3H), 0.59 (d, *J* = 6.7 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 173.49, 149.80, 144.10, 141.84, 131.60, 131.43, 127.56, 126.60, 125.95, 125.83, 125.50, 122.76, 119.75, 115.76, 50.62, 48.60, 31.31, 25.64, 23.84, 22.43.

(Known compound: J. Org. Chem. 2021, 86, 9055–9066).

3as

5-(2-ethylbutyl)-5-methylbenzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one

Purification by flash column chromatography (eluent: PE/EA = 20/1) gave the title compound as white solid (75.8 mg, 76% yield).

¹**H** NMR (400 MHz, Chloroform-*d*) δ 8.51 (d, *J* = 7.8 Hz, 1H), 8.39 (d, *J* = 7.2 Hz, 1H), 7.85 (d, *J* = 7.2 Hz, 1H), 7.59 (t, *J* = 7.6 Hz, 1H), 7.54 – 7.42 (m, 4H), 2.43 (dd, *J* = 14.3, 6.5 Hz, 1H), 2.03 (d, *J* = 14.5 Hz, 1H), 1.75 (s, 3H), 0.95 (dt, *J* = 20.6, 8.3 Hz, 6H), 0.58 (dt, *J* = 13.9, 7.3 Hz, 6H).

¹³C NMR (101 MHz, Chloroform-d) δ 173.51, 149.91, 144.00, 141.90, 131.60, 131.37, 127.61, 126.67, 125.86, 125.54, 122.81, 119.72, 115.69, 48.65, 46.33, 37.29, 29.98, 25.82, 25.25, 10.35, 9.98.
(Known compound: Chem. Commun, 2019, 55, 2861-2864).

5-methyl-5-((tetrahydrofuran-2-yl)methyl)benzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one Purification by flash column chromatography (eluent: PE/EA = 20/1) gave the title compound as white solid (53.8 mg, 54% yield), d:r = 1:1.

¹**H** NMR (400 MHz, Chloroform-*d*) δ 8.50 (d, *J* = 7.8 Hz, 1H), 8.39 (dd, *J* = 7.7, 1.7 Hz, 1H), 7.85 (dd, *J* = 7.8, 1.7 Hz, 1H), 7.63 – 7.54 (m, 2H), 7.52 – 7.43 (m, 3H), 3.47 (td, *J* = 7.7, 6.1 Hz, 2H), 3.37 (td, *J* = 8.1, 5.9 Hz, 1H), 2.61 (dd, *J* = 13.9, 7.2 Hz, 1H), 2.48 (dd, *J* = 13.8, 5.5 Hz, 1H), 1.78 (s, 3H), 1.72 – 1.62 (m, 1H), 1.61 – 1.46 (m, 2H), 1.42 – 1.22 (m, 2H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 173.16, 149.90, 143.99, 141.69, 131.74, 131.35, 127.66, 126.54, 125.93, 125.91, 125.57, 122.51, 119.76, 115.69, 67.22, 47.69, 47.64, 31.20, 29.68, 25.65. (Known compound: Chem. Commun, 2019, 55, 2861-2864).

3au

5-methyl-5-((**1-methylcyclohexyl**)**methyl**)**benzo**[**4**,**5**]**imidazo**[**2**,**1-a**]**isoquinolin-6**(**5H**)**-one** Purification by flash column chromatography (eluent: PE/EA = 20/1) gave the title compound as white solid (88.2 mg, 82% yield).

¹**H NMR (400 MHz, Chloroform-***d***)** δ 8.51 (d, *J* = 7.8 Hz, 1H), 8.41 (d, *J* = 6.9 Hz, 1H), 7.86 (d, *J* = 8.9 Hz, 1H), 7.55 (d, *J* = 3.3 Hz, 2H), 7.52 – 7.43 (m, 3H), 2.62 (d, *J* = 14.4 Hz, 1H), 2.23 (d, *J* = 14.5 Hz, 1H), 1.73 (s, 3H), 1.38 – 1.29 (m, 2H), 1.26 – 1.06 (m, 5H), 1.04 – 0.95 (m, 1H), 0.88 – 0.76 (m, 2H), 0.42 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 173.58, 149.80, 144.03, 142.28, 131.44, 131.08, 127.59, 125.86, 125.51, 122.19, 119.68, 115.82, 55.39, 47.33, 39.22, 39.14, 34.51, 33.31, 26.00, 23.98, 21.79, 21.69.

(Known compound: J. Org. Chem. 2021, 86, 12851-12861).

3av

5-(cyclobutylmethyl)-5-methylbenzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one

Purification by flash column chromatography (eluent: PE/EA = 20/1) gave the title compound as colorless oil (68.3 mg, 72% yield).

¹**H** NMR (400 MHz, Chloroform-*d*) δ 8.51 (d, *J* = 7.8 Hz, 1H), 8.39 (d, *J* = 7.2 Hz, 1H), 7.85 (d, *J* = 7.2 Hz, 1H), 7.59 (t, *J* = 7.7 Hz, 1H), 7.52 – 7.43 (m, 4H), 2.54 – 2.45 (m, 1H), 2.16 – 2.06 (m, 1H), 1.89 – 1.82 (m, 1H), 1.77 (s, 3H), 1.54 – 1.44 (m, 5H), 1.37 – 1.28 (m, 1H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 173.34, 149.92, 143.85, 141.85, 131.67, 131.32, 127.66, 126.49, 125.88, 125.81, 125.58, 122.78, 119.70, 115.69, 51.36, 48.60, 32.87, 28.93, 28.53, 27.92, 18.63. (Known compound: Chem. Commun, 2019, 55, 2861-2864).

3aw

5-(cyclopentylmethyl)-5-methylbenzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one

Purification by flash column chromatography (eluent: PE/EA = 20/1) gave the title compound as white solid (74.3 mg, 75% yield).

¹**H NMR (400 MHz, Chloroform-***d***)** δ 8.52 (d, *J* = 7.6 Hz, 1H), 8.41 (d, *J* = 6.7 Hz, 1H), 7.86 (d, *J* = 8.0 Hz, 1H), 7.60 (t, *J* = 7.5 Hz, 1H), 7.55 – 7.41 (m, 4H), 2.55 (dd, *J* = 13.7, 7.3 Hz, 1H), 2.21 (dd, *J* = 13.8, 5.4 Hz, 1H), 1.75 (s, 3H), 1.47 – 1.36 (m, 2H), 1.33 – 1.14 (m, 5H), 1.03 – 0.92 (m, 1H), 0.88 – 0.76 (m, 1H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 173.56, 149.91, 143.99, 142.12, 131.63, 131.41, 127.62, 126.60, 125.96, 125.86, 125.53, 122.79, 119.75, 115.79, 49.22, 49.15, 37.48, 33.59, 32.46, 30.03, 24.88, 24.61.

(Known compound: Chem. Commun, 2019, 55, 2861-2864).

5-(cyclohexylmethyl)-5-methylbenzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one

Purification by flash column chromatography (eluent: PE/EA = 20/1) gave the title compound as white solid (81.6 mg, 79% yield).

¹**H NMR (400 MHz, Chloroform-***d***)** δ 8.52 (d, *J* = 7.9 Hz, 1H), 8.43 – 8.37 (m, 1H), 7.88 – 7.82 (m, 1H), 7.63 – 7.56 (m, 1H), 7.53 – 7.42 (m, 4H), 2.50 (dd, *J* = 14.2, 7.9 Hz, 1H), 2.08 (dd, *J* = 14.1, 5.0

Hz, 1H), 1.69 (s, 3H), 1.51 – 1.39 (m, 3H), 1.31 – 1.18 (m, 2H), 1.05 – 0.91 (m, 3H), 0.88 – 0.76 (m, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 173.49, 149.84, 144.09, 141.92, 131.59, 131.47, 127.54, 126.57, 125.97, 125.80, 125.47, 122.62, 119.72, 115.78, 48.90, 48.36, 34.93, 34.26, 32.96, 31.66, 25.96, 25.91.

(Known compound: Chem. Commun, 2019, 55, 2861-2864).

3ay

5-(cycloheptylmethyl)-5-methylbenzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one

Purification by flash column chromatography (eluent: PE/EA = 20/1) gave the title compound as white solid (74.2 mg, 69% yield).

¹**H NMR** (**400 MHz, Chloroform-***d*) δ 8.52 (d, *J* = 7.8 Hz, 1H), 8.40 (d, *J* = 7.0 Hz, 1H), 7.86 (d, *J* = 7.3 Hz, 1H), 7.60 (t, *J* = 7.7 Hz, 1H), 7.54 – 7.34 (m, 4H), 2.53 (dd, *J* = 14.2, 7.7 Hz, 1H), 2.07 (dd, *J* = 14.2, 4.4 Hz, 1H), 1.71 (s, 3H), 1.27 (dt, *J* = 33.4, 12.8 Hz, 10H), 1.01 (dt, *J* = 25.7, 8.7 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 173.59, 149.86, 143.98, 141.85, 131.64, 131.39, 127.58,

126.61, 125.92, 125.84, 125.52, 122.70, 119.70, 115.74, 49.93, 48.65, 36.39, 35.60, 33.86, 30.98, 28.42, 28.29, 25.60, 25.49.

(Known compound: Adv. Synth. Catal, 2022, 364, 2080–2085).

3az

5-((1-((4-chlorophenyl)sulfonyl)piperidin-4-yl)methyl)-5-methylbenzo[4,5]imidazo[2,1a]isoquinolin-6(5H)-one

Purification by flash column chromatography (eluent: PE/EA = 10/1) gave the title compound as white solid (87.4 mg, 56% yield).

¹**H NMR (400 MHz, Chloroform-***d***)** δ 8.47 (d, *J* = 7.8 Hz, 1H), 8.36 (d, *J* = 7.4 Hz, 1H), 7.83 (d, *J* = 7.4 Hz, 1H), 7.62 – 7.50 (m, 4H), 7.50 – 7.44 (m, 3H), 7.40 (d, *J* = 8.3 Hz, 2H), 3.49 (d, *J* = 11.5 Hz, 2H), 2.58 – 2.49 (m, 1H), 2.13 – 2.06 (m, 1H), 1.91 – 1.79 (m, 2H), 1.68 (s, 3H), 1.36 – 1.28 (m, 2H), 1.20 – 1.09 (m, 2H), 0.97 – 0.86 (m, 1H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 172.93, 149.50, 144.02, 141.26, 139.19, 134.29, 131.87, 131.26, 129.68, 129.27, 128.93, 127.93, 126.45, 126.11, 125.74, 122.47, 119.82, 115.79, 48.33, 47.54, 46.02, 45.98, 45.82, 40.65, 32.67, 32.19, 31.60, 31.57.

HRMS: C₂₈H₂₇ClN₃O₃S [M+H] ⁺; calculated: 520.1462, found: 520.1459.

3ba

5-(((3r,5r,7r)-adamantan-1-yl)methyl)-5-methylbenzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-

one

Purification by flash column chromatography (eluent: PE/EA = 30/1) gave the title compound as white solid (97.5 mg, 82% yield).

¹**H NMR (400 MHz, Chloroform-***d*) δ 8.52 (d, *J* = 7.6 Hz, 1H), 8.42 (d, *J* = 6.8 Hz, 1H), 7.87 (d, *J* = 7.9 Hz, 1H), 7.57 – 7.42 (m, 5H), 2.53 (d, *J* = 14.5 Hz, 1H), 2.09 (d, *J* = 14.6 Hz, 1H), 1.69 (s, 3H), 1.68 – 1.63 (m, 3H), 1.46 (d, *J* = 12.1 Hz, 3H), 1.35 – 1.29 (m, 3H), 1.14 (q, *J* = 12.2 Hz, 6H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 173.40, 149.77, 144.04, 142.35, 131.48, 131.08, 127.57, 127.53, 125.90, 125.83, 125.47, 122.05, 119.68, 115.87, 56.24, 46.87, 43.48, 36.46, 34.19, 33.68, 28.43. (Known compound: Chem. Commun, 2019, 55, 2861-2864).

3bb

5-methyl-5-(2-oxo-2-phenylethyl)benzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one

Purification by flash column chromatography (eluent: PE/EA = 10/1) gave the title compound as white solid (89.0 mg, 81% yield).

¹**H NMR (400 MHz, Chloroform-***d***)** δ 8.65 – 8.56 (m, 1H), 8.40 – 8.31 (m, 1H), 7.96 – 7.83 (m, 3H), 7.60 – 7.54 (m, 1H), 7.51 – 7.41 (m, 6H), 7.39 – 7.33 (m, 1H), 4.33 (d, *J* = 18.2 Hz, 1H), 4.18 (d, *J* = 18.2 Hz, 1H), 1.75 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 196.13, 173.32, 150.09, 143.82, 142.02, 135.68, 133.70, 131.75, 128.69, 128.10, 127.66, 126.53, 125.74, 125.46, 124.43, 119.72, 115.68, 49.37, 46.21, 30.23. (Known compound: Org. Lett, 2021, 23, 2976–2980).

3bc

5-benzyl-5-neopentylbenzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one

Purification by flash column chromatography (eluent: PE/EA = 20/1) gave the title compound as white solid (89.9 mg, 76% yield).

¹**H NMR (400 MHz, Chloroform-***d***)** δ 8.46 – 8.38 (m, 1H), 8.32 (dd, *J* = 7.9, 1.4 Hz, 1H), 7.76 – 7.69 (m, 2H), 7.66 – 7.60 (m, 1H), 7.51 – 7.45 (m, 1H), 7.44 – 7.37 (m, 2H), 6.86 (t, *J* = 7.3 Hz, 1H), 6.79 (t, *J* = 7.4 Hz, 2H), 6.57 – 6.50 (m, 2H), 3.63 (d, *J* = 12.7 Hz, 1H), 3.24 (d, *J* = 12.7 Hz, 1H), 2.87 (d, *J* = 14.4 Hz, 1H), 2.41 (d, *J* = 14.4 Hz, 1H), 0.64 (s, 9H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 172.36, 149.39, 143.61, 139.54, 134.24, 130.95, 130.76, 129.19, 128.17, 127.74, 127.71, 126.98, 125.79, 125.73, 125.40, 124.08, 119.51, 115.62, 54.31, 53.38, 52.48, 32.16, 31.32.

HRMS: C₂₇H₂₇N₂O [M+H] ⁺; calculated: 395.2123, found: 395.2125.

5-methyl-5-(pent-4-en-1-yl)benzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one

Purification by flash column chromatography (eluent: PE/EA = 40/1) gave the title compound as white solid (59.8 mg, 63% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.49 (d, *J* = 7.8 Hz, 1H), 8.38 (d, *J* = 7.6 Hz, 1H), 7.83 (d, *J* = 7.1 Hz, 1H), 7.57 (t, *J* = 6.8 Hz, 1H), 7.53 – 7.39 (m, 4H), 5.66 – 5.50 (m, 1H), 4.95 – 4.79 (m, 2H), 2.41 (td, *J* = 12.9, 4.5 Hz, 1H), 2.10 – 1.85 (m, 3H), 1.73 (s, 3H), 1.14 – 1.00 (m, 1H), 0.97 – 0.85 (m, 1H).

¹³C NMR (101 MHz, Chloroform-d) δ 173.27, 149.85, 144.02, 141.74, 137.61, 131.92, 131.28, 127.69, 126.03, 125.87, 125.54, 122.97, 119.76, 115.71, 115.13, 49.37, 42.43, 33.45, 28.91, 24.28.
(Known compound: J. Org. Chem. 2021, 86, 9055–9066).

5-(5-(2,5-dimethylphenoxy)-2,2-dimethylpentyl)-5-methylbenzo[4,5]imidazo[2,1a]isoquinolin-6(5H)-one

Purification by flash column chromatography (eluent: PE/EA = 20/1) gave the title compound as white solid (57.4 mg, 41% yield).

¹**H** NMR (400 MHz, Chloroform-*d*) δ 8.55 (d, *J* = 7.7 Hz, 1H), 8.44 (d, *J* = 7.5 Hz, 1H), 7.88 (d, *J* = 7.4 Hz, 1H), 7.56 (d, *J* = 4.0 Hz, 2H), 7.53 – 7.41 (m, 3H), 7.03 (d, *J* = 7.4 Hz, 1H), 6.69 (d, *J* = 7.5 Hz, 1H), 6.55 (s, 1H), 3.77 – 3.64 (m, 2H), 2.72 (d, *J* = 14.5 Hz, 1H), 2.35 (s, 3H), 2.24 (d, *J* = 14.7 Hz, 1H), 2.19 (s, 3H), 1.77 (s, 3H), 1.75 – 1.63 (m, 2H), 1.17 – 1.01 (m, 2H), 0.59 (s, 3H), 0.51 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 173.45, 156.98, 149.74, 144.10, 142.02, 136.38, 131.43, 131.21, 130.28, 127.71, 127.49, 125.97, 125.93, 125.60, 123.52, 122.44, 120.65, 119.79, 115.78, 111.97, 68.28, 53.35, 47.52, 40.41, 34.32, 33.11, 28.30, 27.52, 24.06, 21.47, 15.88.

HRMS: C₃₁H₃₅N₂O₂ [M+H] ⁺; calculated: 467.2699, found: 467.2693.

3bf

5-(2-(4-isobutylphenyl)propyl)-5-methylbenzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one Purification by flash column chromatography (eluent: PE/EA = 20/1) gave the title compound as white solid (43.1 mg, 34% yield).

¹**H** NMR (400 MHz, Chloroform-*d*) δ 8.45 (d, *J* = 7.0 Hz, 1H), 8.36 (d, *J* = 7.8 Hz, 1H), 7.87 (d, *J* = 7.2 Hz, 1H), 7.51 – 7.32 (m, 5H), 6.80 (d, *J* = 7.6 Hz, 2H), 6.67 (d, *J* = 7.7 Hz, 2H), 2.89 – 2.79 (m, 1H), 2.54 – 2.44 (m, 2H), 2.34 (d, *J* = 7.2 Hz, 2H), 1.82 – 1.75 (m, 1H), 1.71 (s, 3H), 1.00 (d, *J* = 6.4 Hz, 3H), 0.90 (d, *J* = 5.9 Hz, 6H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 173.45, 149.89, 144.06, 143.23, 141.30, 139.19, 131.41, 131.32, 129.09, 128.93, 127.31, 126.67, 126.61, 126.23, 125.92, 125.75, 125.52, 122.60, 119.76, 115.81, 50.22, 48.76, 44.93, 37.17, 31.27, 30.11, 22.63, 22.45.

HRMS: C₂₉H₃₁N₂O [M+H] ⁺; calculated: 423.2436, found: 423.2433.

10,13-dimethyl-16-(5-(5-methyl-6-oxo-5,6-dihydrobenzo[4,5]imidazo[2,1-a]isoquinolin-5yl)pentan-2-yl)hexadecahydro-1H-cyclopenta[a]phenanthrene-3,6-diyl bis(4-

methylbenzenesulfonate)

Purification by flash column chromatography (eluent: PE/EA = 10/1) gave the title compound as white solid (148.8 mg, 54% yield).

¹**H NMR (400 MHz, Chloroform-***d***)** δ 8.49 (d, *J* = 7.4 Hz, 1H), 8.39 (d, *J* = 9.1 Hz, 1H), 7.88 – 7.70 (m, 5H), 7.60 (t, *J* = 7.6 Hz, 1H), 7.54 – 7.42 (m, 4H), 7.41 – 7.31 (m, 4H), 4.85 – 4.71 (m, 1H), 4.38 – 4.22 (m, 1H), 2.47 (d, *J* = 3.2 Hz, 6H), 1.73 (s, 3H), 1.70 – 1.55 (m, 4H), 1.54 – 1.29 (m, 7H), 1.31 – 1.19 (m, 10H), 1.16 – 1.01 (m, 4H), 1.02 – 0.79 (m, 9H), 0.77 (s, 3H), 0.68 – 0.46 (m, 4H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 173.45, 149.98, 144.69, 144.04, 141.90, 134.49, 131.91, 131.33, 130.30, 129.84, 129.81, 129.07, 127.66, 127.60, 127.53, 126.68, 126.03, 125.89, 125.54, 123.06, 122.94, 119.73, 115.74, 81.81, 56.05, 55.89, 55.66, 49.52, 46.30, 43.33, 43.13, 42.70, 39.47, 39.39, 36.11, 35.68, 35.59, 35.26, 35.18, 34.78, 32.07, 29.72, 29.12, 27.95, 27.33, 26.44, 23.84, 22.85, 21.70, 21.68, 20.46, 18.26, 18.21, 11.89.

HRMS: C₅₄H₆₅N₂O₇S₂ [M+H] ⁺; calculated: 917.4233, found: 917.4243.

3bh

5-methyl-5-neopentyl-5,6-dihydrobenzo[4,5]imidazo[2,1-a]isoquinolin-6-ol

Purification by flash column chromatography (eluent: PE/EA = 10/1) gave the title compound as white solid (310.8mg, 97% yield).

¹**H NMR** (**400 MHz, Chloroform-***d*) δ 8.10 (dd, *J* = 7.7, 1.4 Hz, 1H), 7.71 – 7.66 (m, 1H), 7.52 (dd, *J* = 7.9, 1.2 Hz, 1H), 7.43 – 7.38 (m, 2H), 7.28 – 7.20 (m, 3H), 5.69 (s, 1H), 1.85 (s, 3H), 1.41 (s, 2H), 0.69 (s, 9H).

¹³C NMR (101 MHz, Chloroform-d) δ 147.42, 143.66, 139.83, 133.79, 130.55, 127.73, 127.59, 125.88, 125.00, 123.10, 122.93, 119.65, 109.17, 81.63, 52.13, 45.01, 32.50, 31.31, 21.86.
HRMS: C₂₁H₂₅N₂O [M+H] ⁺; calculated: 321.1982, found: 321.1983.

5-methyl-5-neopentyl-5,6-dihydrobenzo[4,5]imidazo[2,1-a]isoquinolin-6-yl 4-(tert-butyl)benzoate Purification by flash column chromatography (eluent: PE/EA = 10/1) gave the title compound as white solid (433.6mg, 93% yield).

¹**H NMR (400 MHz, Chloroform-***d***)** δ 8.41 (d, *J* = 7.2 Hz, 1H), 7.89 – 7.81 (m, 1H), 7.79 – 7.74 (m, 1H), 7.71 (d, *J* = 8.6 Hz, 2H), 7.58 – 7.49 (m, 3H), 7.44 (s, 1H), 7.37 – 7.31 (m, 4H), 1.80 (s, 3H), 1.63 – 1.53 (m, 2H), 1.26 (s, 9H), 0.84 (s, 9H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 165.72, 157.51, 148.24, 141.11, 133.70, 130.80, 129.79, 127.66, 126.28, 126.04, 125.81, 125.44, 123.62, 123.34, 119.64, 110.57, 52.70, 43.90, 35.10, 32.75, 31.49, 30.98, 21.15.

HRMS: C₃₂H₃₇N₂O₂ [M+H] ⁺; calculated: 481.2855, found: 481.2854.

XII. Copied of NMR spectra

210 200 190 180 170 160 150 140 150 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H and ¹³C NMR spectra of 3bi

