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Fig. S1 1H NMR spectra of VCOH in DMSO-d6.
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Fig. S2 13C NMR spectra of VCOH in DMSO-d6.

Fig. S3 High resolution mass spectra of VCOH.



Fig. S4 IR spectra of VCOH showing peaks at 3340 cm-1, 3340 cm-1, 1553cm-1 and 1525 cm-1 

for O–H, N–H, C=N and C=S bond respectively.



Fig. S5 Job’s plot of VCOH in presence of PO4
3- using continuous variation method, indicating 

the 1:1 stoichiometric interaction between VCOH and PO4
3- ion.

Fig. S6 Benesi-Hildebrand plot of absorbance intensity at 392 nm wavelength of PNOH with 
increasing concentration of PO4

3- ion.



Fig. S7 (a) UV-Vis absorption and (b) emission spectra of VCOH in presence of increasing 

concentration (0 – 8.0 mM) of base (NaOH).

Fig. S8 1H NMR spectra in DMSO-d6of (A) VCOH, (B) VCOH in presence of 1 equivalent 

PO4
3-and (C) VCOH in presence of 2 equivalent PO4

3-.



Fig. S9 Benesi-Hildebrand plot of emission intensity at 462 nm wavelength of PNOH with 

increasing concentration of PO4
3- ion.

Fig. S10 (a) Plot of fluorescence intensity vs. concentration of VCOH for measuring standard 
deviation (σ); (b) plot of fluorescence intensity vs. concentration of PO4

3- for measuring slope 
(k), of LOD experiment [LOD = (3 x 0.275)/1.68091 x 107 M = 0.49nM].



Fig. S11 Mamdani rule viewer for VCOH.

Fig. S12 Training state of the ANN model of VCOH (monitoring wavelength at 459 nm) up to 
epoch 19.



Fig. S13 Artificial neural network model consisting of 2 inputs, 5 hidden layers, and 1 output.

Fig. S14 Schematic sketch of ANFIS network comprising two inputs, five layers, and one output.



Fig. S15 (a) Data set to train the ANFIS network. (b) Root mean square error (RMSE) 
minimization up to 200 epochs. (c) Data for testing the accuracy of the network output. (d) 
Combination of testing data and the FIS output.

Fig. S16 Sugeno rule viewer for VCOH (monitoring wavelength at 459 nm).



Fig. S17 Schematic diagram of ANFIS on the basis of Sugeno’s method (monitoring at 459 nm) 
maintaining 36 rules.

Table S1 Comparative Study of VCOH with other reported PO4
3- ion sensors.

Sl. 

No.

probe No. of 

steps for 

synthesis

Method 

for PO4
-3 

detection

Time 

response

LOD Binding 

Constant 

(k) (M-1)

On-site 

application 

(paper 

strips)

λex/λem
(nm)

Ref.

1 3

‘turn-off’ 
response 
through
decomple-

xation of 

metal ion

NA 2.63 

µM
NA NA 430/480 37



2 2 ‘turn-on’ 
response 
through
decomple-

xation of 

metal ion

NA 1.7  

µM
NA Yes 440/531 39

3 3 ‘turn-on’ 
response 
through
decomple-

xation of 

metal ion

NA 31.6  

µM
NA Yes 360/422 40

4 3 AIE based 
‘turn-on’ 
response

NA -- 2.36 x 

104

NA 400/502 41

5 2 ACIE 
based 
‘turn-on’ 
response

NA -- NA NA 429/500 42

6 2 ‘turn-on’ 
response 
through
decomple

xation of 

metal ion

NA 0.11
µM

1.3 x 

105

NA NA 46

7 2 Colorimet

ric by 

metal 

complex

NA 18.6
µM

NA NA 420/580 47

8 1 Direct 
‘turn-
on’ 
response 
through 
deproton
ation

Instant
(‘zero 

wait’ 

response)

0.49

nM

8.9 x 

103

Yes 325/459 Present 
work



Table S2 Different values of emission intensity of VCOH on the ratiometric variation of PO4
3- 

and H+.

No. of obs. Equivalents of PO4
3- Equivalents of H+ Emission intensity at 459 nm

1. 1 0.4 401
2. 0.7 0.4 341
3. 0.8 0.2 467
4. 0.6 0.6 73
5. 0.7 0.8 57
6. 1 0.6 268
7. 0.7 0 503
8. 0.5 0.2 246
9. 0.8 0.6 193
10. 0.4 0.4 68
11. 0.6 0.2 331
12. 0.2 0.4 63
13. 0.5 0.8 65
14. 1 0 696
15. 0.4 0.2 131
16. 0.8 0 592
17. 0.5 0.4 153
18. 0.2 1 55
19. 0.4 0.8 63
20. 0.8 0.4 372
21. 1 1 61
22. 0.7 0.2 419
23. 0.2 0 97
24. 0.5 0.6 70
25. 0.4 0 201
26. 0.2 0.8 61
27. 0.6 0 409
28. 1 0.2 542
29. 0.5 1 67
30. 0.8 0.8 69
31. 0.4 1 58
32. 1 0.8 137
33. 0.7 1 59
34. 0.5 0 319



35. 0.6 0.4 229
36. 0.2 0.6 69
37. 0.8 1 67
38. 0.6 0.8 68
39 0.4 0.6 60
40. 0.7 0.6 181
41. 0.2 0.2 71
42. 0.6 1 66

Table S3 Rules for the fuzzy logic system of VCOH where input 1 = PO4
3-, input 2 = H+, and 

output = emission intensity at 459 nm. The rules encompass the following statements-



Table S4 Rules for the ANFIS (based on Sugeno’s method) by taking PO4
3- as input 1 and H+ as

input 2, whereas emission intensity at 678 nm as the output. The rules encompass the following 

statements-



Experimental section

Artificial neural network (ANN)

An artificial neural network is a network that is modeled after the central nervous system of 

animals, primarily the brain. Artificial neural networks (ANNs) are commonly used to predict 

functions that may depend on numerous unknown inputs. We used feed-forward neural networks 

(FNN) in this study because our system is static, rather than recurrent neural networks (RNN). 

FNN is a simple and convenient type of network where information flows in one direction - from 

input nodes, through hidden nodes, and finally to output nodes. For a deeper understanding and 

better forecasting of the system, we implemented an advanced ANN-FF network, known for its 

high efficiency in forecasting static systems.

A model of an artificial neural network that has two inputs, five hidden layers, and one output. In 

ANN-FF, experimental data is used to approximate the input-output relation as a function. The 

network diagram for the ANN-FF system is available in Fig. S13. When the hidden layer has 

enough neurons and consistent data is used, it can solve multidimensional mapping problems 

effectively. A neural network is necessary to map data set inputs to targets. Therefore, a 

numerical value is assigned to each pattern, such as 1, 2, 3, 4, and so on.

In this study, a neural network for function fitting was coded in MATLAB 2018. The network 

input data is defined by the target output data. Table S2 shows the emission intensity as output 

resulting from 42 combinations of two inputs: PO4
3- and H+. The 42×2 matrix represents the 

input data of 42 samples with 2 inputs, while the 42×1 matrix represents the output data (at 459 

nm) of one element. The 42 samples have been separated into 3 distinct sets of data. During 

training, 70% of the data is used and the network is adjusted based on its errors. The learning 

algorithm was optimized and the number of neurons in the hidden layer was adjusted. 15% data 

are employed to compute the network generalization and to halt training. When generalization 

stops improving, data validation takes place. The remaining 15% of data gives an independent 

estimate of the network performance during and after the training, called testing data (Fig. 9a).



Adaptive neuro-fuzzy inference system (ANFIS)

The network framework of the ANFIS is shown in Fig. S14. The network has five connected 

layers (excluding input) for two input dimensions: P and Q. P has three fuzzy sets (C1C2C3) and 

Q has three fuzzy sets (D1D2D3). We have selected A number of inputs and B number of fuzzy 

sets to represent each input. This implies A×B nodes in Layer 1. In Layer 2, each input node's 

membership function output is connected to all other nodes, resulting in a total of B^A nodes. 

Layers 3 and 4 have the same number of nodes as Layer 2. Layer 5 represents the output of the 

network with only one node. When each input is considered a node, the total number of nodes in 

the architecture is A + A×B + 3×B^A + 1. In ANFIS, only the membership function parameters 

in Layer 1 and input weights in Layer 4 need to be trained for prediction. When using the trimf 

function with three parameters, Layer 1 requires an assessment of 3×B×A premise parameters, 

while Layer 4 requires an assessment of A×B^A consequent weight parameters.

The ANFIS structure is tuned using both least-squares estimation and the back propagation 

algorithm. A fuzzy set A in a universe X is a collection of ordered pairs of generic elements and 

its membership function μA(x): X → [0, 1], which assigns a number μA(x) to each element x of 

X. The fuzzy logic controller operates based on fuzzy rules among linguistic variables. These 

fuzzy rules are represented in the form of conditional statements.

The ANFIS pattern predictor model for flow regime consists of four parts: fuzzification, 

knowledge base, artificial neural network, and defuzzification blocks (Scheme 3). The inputs to 

the ANFIS are the PO4
3- and H+. The binary data is converted into linguistic variables by the 

fuzzification unit. The knowledge base block receives these inputs. During the training of the 

neural network using MATLAB 2018a's ANFIS tool, 36 rules were developed. The knowledge 

base block is linked to the artificial neural network block. A hybrid optimization algorithm is 

utilized to train the neural network and select the appropriate set of rules for the knowledge base. 

Training is an important step in selecting a proper rule base for predicting emission intensity 

values at 459 nm. Once the ANFIS model is assigned a rule base, it can begin making 

predictions. The trained ANFIS was validated using 15% of the data. The linguistic variables are 

converted back into numerical data in crisp form by the defuzzification unit using the output of 

the artificial neural network unit as input.




