Supplementary Data

Orthovanadate Cofactor Chemistry of Marine Bromoperoxidases

Jens Hartung*

Fachbereich Chemie, Organische Chemie, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Erwin-Schrödinger-Straße, D-67663 Kaiserslautern, Germany

Contents

1	General Remarks	
2	Molecular Modelling	S3
3	Orthovanadium Acid and Isoorthovanadium Acid	S4
4	Orthovanadium Acid with Hydron	S10
5	Hydrates of <i>cis</i> -Dioxidovanadium(V)	S14
6	Metavanadium Peroxoic Acid and its Conjugate Base	S20
7	Water Tetramer and Hydronium	S35
8	References	S37

1 General Remarks

1.1 References

The list of references (Section 8) refers exclusively to the *Supplementary data* and is therefore independent from the associated article.

1.2 Molecular graphics

Ball-and-stick graphics displayed in sections 3–7 were generated with thie ChemPlus addon (Version 1.6) to HyperChem 4.5.¹ Atomic coordinates for the graphics are taken from B3LYP/6-311++G(d,p)-minimized energy functions archived in Gaussian03-logfiles.² Transforming Gaussian logfiles into HyperChem input was achieved by the Open-Babelfeeware.³ The selected color code depicts vanadium in yellow, oxygen in red, and hydrogen in white.

2 Molecular Modelling

2.1 Electronic structure methods

Structures and energies were computed with the density functional/Hartree-Fock-hybrid model B3LYP in combination with the split valence triple- ζ basis set B3LYP/6-311++G(d,p) implemented in Gaussian03-suite of program (Revision E.01).² Supplemental energy function minimizations for predicting relative energies of isomers on the H₄VO₄⁺-energy surface using a semiempiric hybrid density functional with perturbative second-order correlation (B2PLYP) combined with the split valence triple- ζ basis set B3LYP/6-311++G(d,p) were performed with the Gaussian09-suite of programm (Revision D.01)⁴.

All energy functions were minimized without constraining symmetry or internal coordinates, using the Bernie-algorithm in combination with the tight-option and the ultrafine grid for integration. Minimum structures were identified as such from calculated vibrational spectra by the absence of imaginary vibrational modes.

2.2 Thermochemical model

Thermochemical analysis was performed from minimum structures on the associated potential energy surface, as secured by absence of negative normal modes in calculated vibrational spectra.

Gibbs free energies (G°) were calculated for temperature of 298.15 Kelvin and a pressure of 1 atmosphere, based on the thermochemical model implemented in the Gaussiansoftware and unscaled frequency calculations. Likewise obtained Gibbs free energies are corrected for zero-point vibrational energy, thermal contributions, and molecular entropy.

3 Orthovanadium Acid and Isoorthovanadium Acid

3.1 Orthovanadium Acid

Figure S1. Calculated minimum structure of orthovanadium acid.

(*i*) B3LYP/6-311++G**//B3LYP/6-311++G**

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	23	0	0.000000	0.000000	0.027767
2	8	0	0.00000	0.00000	1.596654
3	8	0	0.00000	1.677284	-0.561099
4	8	0	1.452570	-0.838642	-0.561099
5	8	0	-1.452570	-0.838642	-0.561099
6	1	0	-0.000352	2.446734	0.018161
7	1	0	2.119110	-1.223062	0.018161
8	1	0	-2.118758	-1.223672	0.018161
Zero-point	c correction	=	0.0	043521 (Hart	ree/Particle
Thermal co	prrection to	Energy=	0.0	050709	
Thermal co	prrection to	Enthalpy=	0.0	051653	
Thermal co	prrection to	Gibbs Free E	nergy= 0.0	014104	
Sum of ele	ectronic and	zero-point E	nergies=	-1246.	940727
Sum of ele	ectronic and	thermal Ener	gies=	-1246.	933538
Sum of ele	ectronic and	thermal Enth	alpies=	-1246.	932594
Sum of ele	ectronic and	thermal Free	Energies=	-1246.	970143

Standard orientation:

RMSF=1.363e-05\ PG=C03 [C3(V101),X(H303)]\NImag=0\\@.

(*ii*) NBO-analysis – B3LYP/6-31G*// B3LYP/6-311++G**

====	=======================================	===:	====	=============	===============	================	
No.	(Occupancy) Bond	orl	oita	al/ Coeffici	ents/ Hybrid	S	
=====	(1 92324) BD (1)	 v		 ∩ 2			
±•	(28 98%) 0 5383*	v	1	s(28 30%)	n(0, 0.5%)	d(71 37%)	f(0 28%)
	(20.908) 0.9900 (71 028) 0.8427*	ò	2	s(11, 63%)	p(0.038) p(88, 18%)	d(0, 19%)	1(0.200)
2	(1 98494) BD (2)	v	1_	0 2	P(00.100)	a(0.190)	
<u> </u>	(22 62%) 0 4756*	v	1	S(0,00%)	n(1, 11%)	d(98 70%)	f(0,20%)
	(77 38%) 0 8796*	Ô	2	S(0.00%)	p(1,11,0) p(99,89%)	d(0 11%)	1(0.200)
З	(1 98488) BD (3)	v	1_	0 2	p()).0)0)	a(0.110)	
0.	(22 62%) 0 4756*	v	1	S(0,00%)	$n(1 \ 11\%)$	d(98 69%)	f(0,20%)
	(77 38%) 0 8797*	Ô	2	S(0.00%)	p(1,1,1,0) p(99,89%)	d(0 11%)	1(0.200)
4	(1 97440) BD (1)	v	1-	0 3	p()).0)0)	a(0.110)	
- •	(19 02%) 0 4361*	v	1	s (23 36%)	n(0.54%)	d(75 94%)	f(0 16%)
	(80 98%) 0 8999*	Ô	3	s(14, 67%)	p(85,25%)	d(0, 0.8%)	1(0.100)
5	(1 97440) BD (1)	v	1-	0 4	P(00:200)	a (0.000)	
0.	(19 01%) 0 4360*	v	1	s (23 39%)	p(0, 53%)	d(75 91%)	f(0 16%)
	(80,99%) 0,8999*	0	4	s(14, 67%)	p(85,25%)	d(0, 0.8%)	1 (0 1 1 0 0)
6	(1 97427) BD (1)	v	1-	0 5	P(00:200)	a(0.000)	
•••	(19.10%) 0.4370*	v	1	s (23, 36%)	p(0.54%)	d(75,94%)	f(0.16%)
	(80.90%) 0.8995*	0	5	s(14.59%)	p(85.33%)	d(0.08%)	1 (0.100)
23.	(1.97474) LP (1)	0	2	s (88.39%)	p(11.61%)	d(0.00%)	
24.	(1.95032) LP (1)	õ	3	s(59.64%)	p(40.30%)	d(0.06%)	
25.	(1.81299) LP (2)	ō	3	s(0.00%)	p(99.93%)	d(0.07%)	
26.	(1.95035) LP (1)	Ō	4	s(59.64%)	p(40.30%)	d(0.06%)	
27.	(1.81352) LP (2)	0	4	s(0.00%)	p(99.93%)	d(0.07%)	
28.	(1.95005) LP (1)	0	5	s(59.75%)	p(40.19%)	d(0.06%)	
29.	(1.81161) LP (2)	0	5	s(0.00%)	p(99.93%)	d(0.07%)	
====		===:	====				

Donor NBO (i)	Acceptor NBO (j)	kcal/mol	a.u.	a.u.
23. LP (1) O 2 23. LP (1) O 2 23. LP (1) O 2 23. LP (1) O 2 23. LP (1) O 2 24. LP (1) O 3 24. LP (1) O 3 24. LP (1) O 3 24. LP (1) O 3 24. LP (1) O 3 25. LP (2) O 3	94. BD*(1) V 1- 0 2 97. BD*(1) V 1- 0 3 98. BD*(1) V 1- 0 4 99. BD*(1) V 1- 0 5 94. BD*(1) V 1- 0 2 96. BD*(3) V 1- 0 2 98. BD*(1) V 1- 0 4 99. BD*(1) V 1- 0 5 95. BD*(2) V 1- 0 2	2.45 1.65 1.66 1.65 5.04 9.20 0.95 0.95 5.42	1.14 1.06 1.06 1.06 0.81 0.62 0.73 0.73 0.25	0.048 0.039 0.039 0.039 0.058 0.069 0.024 0.024 0.024 0.023
25. LP (2) 0 3 25. LP (2) 0 3 25. LP (2) 0 3 26. LP (1) 0 4 26. LP (1) 0 4 26. LP (1) 0 4 26. LP (1) 0 4 26. LP (1) 0 4 27. LP (2) 0 4 28. LP (1) 0 5 28. LP (1) 0 5 28. LP (1) 0 5	95. BD*(2) V 1- 0 2 98. BD*(1) V 1- 0 4 99. BD*(1) V 1- 0 5 94. BD*(1) V 1- 0 2 95. BD*(2) V 1- 0 2 96. BD*(3) V 1- 0 2 97. BD*(1) V 1- 0 3 99. BD*(1) V 1- 0 3 99. BD*(2) V 1- 0 2 96. BD*(3) V 1- 0 2 97. BD*(1) V 1- 0 3 99. BD*(1) V 1- 0 2 96. BD*(2) V 1- 0 2 96. BD*(2) V 1- 0 2 96. BD*(2) V 1- 0 2 97. BD*(1) V 1- 0 2 96. BD*(3) V 1- 0 2 97. BD*(1) V 1- 0 2 97. BD*(1	5.42 9.42 9.45 5.04 6.89 2.30 0.95 0.94 1.36 4.05 9.41 9.43 5.04 6.93 2.31	0.25 0.36 0.36 0.81 0.62 0.62 0.73 0.25 0.25 0.25 0.36 0.36 0.81 0.62 0.62	0.033 0.052 0.052 0.058 0.060 0.034 0.024 0.024 0.017 0.029 0.052 0.052 0.052 0.058 0.060 0.034 0.024
28. LP (1) 0 5 28. LP (1) 0 5 29. LP (2) 0 5 29. LP (2) 0 5 29. LP (2) 0 5 29. LP (2) 0 5	97. BD*(1) V 1- 0 3 98. BD*(1) V 1- 0 4 95. BD*(2) V 1- 0 2 96. BD*(3) V 1- 0 2 97. BD*(1) V 1- 0 3 98. BD*(1) V 1- 0 4	0.95 0.95 1.36 4.08 9.44 9.45	0.73 0.73 0.25 0.25 0.36 0.36	0.024 0.024 0.017 0.029 0.052 0.052

Second order perturbation theory analysis of Fock-matrix for syn/syn-orthovanadium acid in NBO-basis(threshold for printing: 0.50 kcal/mol)

Natural bond orbital (NBO)-energies

NBO		Occupancy	Energy / a.u.	
1. BD (1) V 2. BD (2) V 3. BD (3) V 4. BD (1) V 5. BD (1) V 6. BD (1) V	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.92324 1.98494 1.98488 1.97440 1.97440 1.97427	-0.60266 -0.37606 -0.37605 -0.54966 -0.54983 -0.54806	

3.2 Isoorthovanadium Acid

Figure S2. Calculated minimum structure of isorthovanadium acid.

(*i*) B3LYP/6-311++G**//B3LYP/6-311++G**

Center	Atomic	Atomic	Coor	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	8	0	-0.098149	-0.775750	1.455103
2	23	0	-0.149966	-0.109804	0.000621
3	8	0	0.018815	-1.191444	-1.167499
4	8	0	-1.486321	1.069845	-0.272348
5	8	0	1.693194	0.861947	-0.061222
6	1	0	-2.041580	1.412243	0.435685
7	1	0	2.225375	0.761791	0.738502
8	1	0	2.245129	0.634677	-0.820730
Zero-point	t correction:	=	0.	045039 (Hart	ree/Particle
Thermal co	prrection to	Enerav=	0.	052530	,
Thermal co	prrection to	Enthalpv=	0.	053474	
Thermal co	orrection to	Gibbs Free H	Inergy= 0.	013661	
Sum of ele	ectronic and	zero-point H	Inergies=	-1246.	903014
Sum of ele	ectronic and	thermal Ener	rgies=	-1246.	895524
Sum of ele	ectronic and	thermal Enth	nalpies=	-1246.	894580
Sum of ele	ectronic and	thermal Free	e Energies=	-1246.	934392
			2		
Version=EN	M64L-G09RevD	.01\State=1-A	A\HF=-1246.94	80533\RMSD=9	.299e-09\
RMSF=3.10	7e-06\PG=C01	[X(H3O4V1)]	NImag=0\\@.		

Standard orientation:

(*ii*) NBO-analysis – B3LYP/6-31G*// B3LYP/6-311++G**

==== No.	(Occupanc	y)	Boi	nd orbital/	Coefficient	s/ Hybrids	
1.	(1.91863)	BD (1) O	1-	V 2			
	(72.51%)	0.8515* O	1	s(10.45%)	p(89.37%)	d(0.18%)	
	(27.49%)	0.5243* V	2	s(13.23%)	p(3.13%)	d(82.62%)	f(1.02%)
2.	(1.89108)	BD (2) O	1-	V 2			
	(89.06%)	0.9437* 0	1	s(0.27%)	p(99.65%)	d(0.09%)	
	(10.94%)	0.3307* V	2	s(0.71%)	p(28.95%)	d(63.98%)	f(6.37%)
3.	(1.93964)	BD (3) O	1-	V 2			
	(77.74%)	0.8817* 0	1	s(0.02%)	p(99.87%)	d(0.11%)	
	(22.26%)	0.4718* V	2	s(6.53%)	p(8.03%)	d(84.42%)	f(1.02%)
4.	(1.91993)	BD (1) V	2-	O 4			
	(28.10%)	0.5301* V	2	s(10.56%)	p(3.43%)	d(84.60%)	f(1.40%)
	(71.90%)	0.8479* 0	4	s(10.17%)	p(89.65%)	d(0.18%)	
5.	(1.88747)	BD (2) V	2-	O 4			
	(10.71%)	0.3273* V	2	s(1.96%)	p(26.89%)	d(64.42%)	f(6.74%)
	(89.29%)	0.9449* 0	4	s(0.11%)	p(99.80%)	d(0.09%)	
6.	(1.92801)	BD (3) V	2-	O 4			
	(22.17%)	0.4709* V	2	s(8.04%)	p(9.26%)	d(82.03%)	f(0.67%)
	(77.83%)	0.8822* 0	4	s(0.02%)	p(99.87%)	d(0.11%)	
7.	(1.93450)	BD (1) V	2-	05			
	(13.42%)	0.3664* V	2	s(42.50%)	p(5.87%)	d(51.23%)	f(0.40%)
	(86.58%)	0.9305* 0	5	s(15.09%)	p(84.84%)	d(0.07%)	
24.	(1.97479)	LP (1) O	1	s(89.27%)	p(10.73%)	d(0.00%)	
25.	(1.98784)	LP (1) O	3	s(21.71%)	p(78.22%)	d(0.08%)	
26.	(1.88160)	LP (2) O	3	s(28.62%)	p(71.36%)	d(0.02%)	
27.	(1.97484)	LP (1) O	4	s(89.70%)	p(10.30%)	d(0.00%)	
28.	(1.96089)	LP (1) O	5	s(55.44%)	p(44.51%)	d(0.06%)	
29.	(1.81893)	LP (2) O	5	s(3.67%)	p(96.26%)	d(0.06%)	

ксаі,	/mol ====	_) ====:			:						
Dono	r NE	30 (i)	Acce	eptor NI	во	(j)		kcal/mol	a.u.	a.u.
with:	==== in v	==== ınit	==== 1	=======	=======	===	=====				
24.	LP ((1)	O 1	95.	BD*(3)	0	1- V	2	1.30	0.98	0.032
24.	LP ((1)	01	96.	BD*(1)	V	2- 0	4	0.83	1.07	0.027
24.	LP ((1)	01	97.	BD*(2)	V	2- 0	4	6.23	1.21	0.082
24.	LP ((1)	D 1	99.	BD*(1)	V	2- 0	5	4.41	1.11	0.064
27.	LP ((1)	O 4	93.	BD*(1)	0	1- V	2	1.08	1.06	0.031
27.	LP ((1)	О 4	94.	BD*(2)	0	1- V	2	5.29	1.21	0.074
27.	LP ((1)	О 4	98.	BD*(3)	V	2- 0	4	1.74	0.97	0.037
27. 1	LP ((1)	O 4	99.	BD*(1)	V	2- 0	5	6.61	1.10	0.079
28. 1	LP ((1)	D 5	93.	BD*(1)	0	1- V	2	4.43	0.74	0.052
28. 1	LP ((1)	D 5	94.	BD*(2)	0	1- V	2	3.22	0.88	0.050
28. 1	LP ((1)	D 5	95.	BD*(3)	0	1- V	2	0.81	0.65	0.021
28. 1	LP ((1)	D 5	99.	BD*(1)	V	2- 0	5	0.60	0.78	0.020
29. 1	LP ((2)	D 5	93.	BD*(1)	0	1- V	2	3.37	0.43	0.034
29. 1	LP ((2)	D 5	94.	BD*(2)	0	1- V	2	3.19	0.57	0.038
29. 1	LP ((2)	D 5	96.	BD*(1)	V	2- 0	4	6.35	0.43	0.047
29.	LP ((2)	D 5	97.	BD*(2)	V	2- 0	4	6.29	0.57	0.054
from	uni	t	1 to	unit 2	2						
1	None	e ab	ove	threshol	Ld						
from	uni	t	2 to	unit 1	L						
25. 1	LP ((1)	с 3	93.	BD*(1)	0	1- V	2	0.29	0.65	0.013
25. 1	LP ((1)	с З	95.	BD*(3)	0	1- V	2	1.43	0.56	0.026
25. 1	LP ((1)	с З	96.	BD*(1)	V	2- 0	4	0.36	0.65	0.014
25. 2	LP ((1)	с З	98.	BD*(3)	V	2 - 0	4	1.82	0.56	0.029
26. 1	LP ((2)	с З	93.	BD*(1)	0	1- V	2	0.69	0.73	0.020
26. 1	LP ((2)	с З	94.	BD*(2)	0	1- V	2	0.41	0.87	0.017
26. 1	LP ((2)	с 3	95.	BD*(3)	0	1- V	2	9.61	0.64	0.070
26. 1	LP ((2)	с З	96.	BD*(1)	V	2- 0	4	0.92	0.72	0.023
26. 1	LP ((2)	с З	97.	BD*(2)	V	2- 0	4	1.09	0.87	0.028
26. 1	LP ((2)	с З	98.	BD*(3)	V	2- 0	4	10.39	0.63	0.073
26. 1	LP ((2)	с З	99.	BD*(1)	V	2- 0	5	8.16	0.77	0.071
with	in u	init	2								
l 	None	e ab	ove ====	threshol	Ld :						
Natu:	ral ====	bon ====	d or ====	bital (1 ========	JBO) -ene	erg	ies =====				
	NE	30					000	cupancy	Ener	gy / a.	u.
Mole	==== cula	==== ar u:	==== nit	1 (HO3	====== 3V)		====				

Second order perturbation theory analysis of Fock-matrix for isoorthovanadium acid in NBO-basis(threshold for printing: 0.50 kcal/mol)

1.91863

1.89108

1.93964

1.91993

1.92801

1.93450

1.88747

-0.51506

-0.28241

-0.30974

-0.50426

-0.27440 -0.30343

-0.50290

1. BD (1) O 1- V 2

2. BD (2) O 1- V 2

3. BD (3) 0 1- V 2

4. BD (1) V 2-0 4

5. BD (2) V 2-0 4

6. BD (3) V 2- 0 4

7. BD (1) V 2-0 5

4 Orthovanadium Acid with Hydron

Figure S3. Calculated minimum structure of monoprotonated orthovanadium acid.

(*i*) B3LYP/6-311++G**//B3LYP/6-311++G**

Center	Atomic	Atomic	Coor	dinates (Angs	stroms)
Number	Number	Туре	Х	Y	Z
1	8	0	0.189988	0.000007	1.590928
2	23	0	0.117926	-0.000000	0.044648
3	8	0	0.818159	-1.429341	-0.628856
4	8	0	-1.862659	0.00004	-0.305113
5	8	0	0.818174	1.429328	-0.628868
6	1	0	-2.540194	0.000036	0.388973
7	1	0	1.204502	2.225842	-0.232214
8	1	0	1.204475	-2.225858	-0.232195
9	1	0	-2.290377	-0.000007	-1.176197
Zero-point	t correction=	=	0.	055888 (Hart:	ree/Particle)
Thermal co	orrection to	Energy=	0.	063688	
Thermal co	orrection to	Enthalpy=	0.	064632	
Thermal co	orrection to	Gibbs Free E	nergy= 0.	024575	
Sum of ele	ectronic and	zero-point E	nergies=	-1247.2	237953
Sum of ele	ectronic and	thermal Ener	qies=	-1247.2	230154
Sum of ele	ectronic and	thermal Enth	alpies=	-1247.2	229209
Sum of ele	ectronic and	thermal Free	Energies=	-1247.2	269266
Version=EN	M64L-G09RevD	.01\State=1-A	\HF=-1247.29	38411\RMSD=8	.520e-09\
RMSF=1.46	1e-06\PG=C01	[X(H4O4V1)]\	NImag=0\\@.		

Standard orientation:

(*ii*) B2PLYP/6-311++G**//B2PLYP/6-311++G**

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	8	0	-0.182550	-0.000006	1.618744
2	23	0	-0.109251	-0.000000	0.020903
3	8	0	-0.850962	-1.452702	-0.612948
4	8	0	-0.850952	1.452711	-0.612938
5	8	0	1.895570	-0.00003	-0.307011
6	1	0	2.573384	-0.000021	0.383509
7	1	0	-1.240859	-2.233341	-0.189948
8	1	0	-1.240844	2.233351	-0.189934
9	1	0	2.332256	0.000012	-1.171174
Zero-poin [.]	t correction=	:	0.0	055234 (Hart:	ree/Particle
Thermal co	orrection to	Energy=	0.0	063255	

Standard orientation:

Zero-point correction=0.055234 (Hartree/Particle)Thermal correction to Energy=0.063255Thermal correction to Enthalpy=0.064200Thermal correction to Gibbs Free Energy=0.023560Sum of electronic and zero-point Energies=-1246.751673Sum of electronic and thermal Energies=-1246.743651Sum of electronic and thermal Enthalpies=-1246.742707Sum of electronic and thermal Free Energies=-1246.783347

Version=EM64L-G09RevD.01\State=1-A\HF=-1246.3685856\MP2=-1246.8069063\
RMSD=1.874e-09\RMSF=1.900e-05\PG=C01 [X(H404V1)]\NImag=0\\@.

==== No.	(Occupancy) Bond	orb	i===	al/ Coeffici	======================================	======================================	
===== 1.	(1.92556) BD (1)	 0	1-	 v 2		===========	
	(68.87%) 0.8299*	0	1	s(10.11%)	p(89.67%)	d(0.23%)	
	(31.13%) 0.5579*	V	2	s(21.57%)	p(0.53%)	d(77.60%)	f(0.30%)
2.	(1.92302) BD (2)	0	1-	V 2			
	(79.59%) 0.8921*	0	1	s(0.00%)	p(99.87%)	d(0.13%)	
	(20.41%) 0.4518*	V	2	s(0.00%)	p(18.46%)	d(80.19%)	f(1.34%)
3.	(1.95832) BD (3)	0	1-	V 2			
	(74.22%) 0.8615*	0	1	s(0.03%)	p(99.82%)	d(0.15%)	
	(25.78%) 0.5077*	V	2	s(5.16%)	p(2.35%)	d(92.22%)	f(0.26%)
4.	(1.89809) BD (1)	v	2-	03			
	(16.26%) 0.4032*	V	2	s(27.85%)	p(13.76%)	d(57.21%)	f(1.18%)
	(83.74%) 0.9151*	0	3	s(15.48%)	p(84.44%)	d(0.08%)	
5.	(1.92759) BD (2)	v	2-	03			
	(11.21%) 0.3348*	V	2	s(3.70%)	p(22.34%)	d(72.08%)	f(1.87%)
	(88.79%) 0.9423*	0	3	s(0.25%)	p(99.69%)	d(0.06%)	
6.	(1.89809) BD (1)	v	2-	O 4			
	(16.26%) 0.4032*	V	2	s(27.85%)	p(13.76%)	d(57.21%)	f(1.18%)
	(83.74%) 0.9151*	0	4	s(15.48%)	p(84.44%)	d(0.08%)	
7.	(1.92759) BD (2)	v	2-	O 4			
	(11.21%) 0.3348*	V	2	s(3.70%)	p(22.34%)	d(72.08%)	f(1.87%)
	(88.79%) 0.9423*	0	4	s(0.25%)	p(99.69%)	d(0.06%)	
25.	(1.97218) LP (1)	0	1	s(89.88%)	p(10.12%)	d(0.00%)	
26.	(1.92922) LP (1)	0	3	s(56.90%)	p(43.03%)	d(0.06%)	
27.	(1.92922) LP (1)	0	4	s(56.90%)	p(43.03%)	d(0.06%)	
28.	(1.96568) LP (1)	0	5	s(0.00%)	p(99.98%)	d(0.02%)	
29.	(1.86150) LP (1)	0	5	s(52.00%)	p(47.99%)	d(0.01%)	

0.50 KCal/mol)					
Donor NBO (i)	Acceptor NBO	(j)	kcal/mol	a.u.	a.u.
<pre>within unit 1 25. LP (1) 0 1 26. LP (1) 0 3 26. LP (1) 0 4 27. LP (1) 0 4 27</pre>	94. BD*(1) O 96. BD*(3) O 97. BD*(1) V 99. BD*(1) V 94. BD*(1) O 95. BD*(2) O 96. BD*(2) O 96. BD*(3) O 97. BD*(1) V 98. BD*(2) V 99. BD*(1) V 94. BD*(1) O 95. BD*(2) O 96. BD*(3) O 97. BD*(1) V 99. BD*(1) V 99. BD*(1) V 100. BD*(2) V	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.75 0.66 1.48 1.48 6.24 10.18 1.00 0.69 1.24 1.11 6.24 10.18 1.00 1.11 0.69 1.24	1.13 0.98 1.21 1.21 0.76 0.75 0.62 0.85 0.76 0.75 0.62 0.75 0.62 0.75 0.62 0.85 0.76 0.85 0.76	0.040 0.023 0.039 0.039 0.062 0.079 0.022 0.022 0.028 0.028 0.028 0.062 0.079 0.022 0.028 0.062 0.079 0.022 0.028 0.022 0.028
from unit 1 to None above t	unit 2 threshold				
from unit 2 to 28. LP (1) 0 5	unit 1 97. BD*(1) V	2-03	0.75	0.58	0.019
28. LP (1) 0 5 28. LP (1) 0 5 28. LP (1) 0 5 29. LP (2) 0 5	98. BD*(2) V 99. BD*(1) V 100. BD*(2) V 96. BD*(3) O 97. BD*(1) V 98. BD*(2) V 99. BD*(1) V 100. BD*(2) V	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.39 0.75 1.39 13.50 3.50 10.46 3.50 10.46	0.49 0.58 0.49 0.69 0.92 0.84 0.92 0.84	0.024 0.019 0.024 0.087 0.051 0.084 0.051 0.084
within unit 2 29. LP (2) O 5 29. LP (2) O 5	103. BD*(1) O 104. BD*(1) O	5- н 6 5- н 9	0.50 0.62	1.16 1.16	0.022 0.025
Natural bond ork	oital (NBO)-energ	gies			
NBO		Occupancy	Energ	gy / a.u	•
1. BD (1) 0 1- 2. BD (2) 0 1- 3. BD (3) 0 1- 4. BD (1) V 2- 5. BD (2) V 2- 6. BD (1) V 2- 7. BD (2) V 2-	V 2 V 2 V 2 O 3 O 3 O 4 O 4	1.92556 1.92302 1.95832 1.89809 1.92759 1.89809 1.92759 1.92759	-0. -0. -0. -0. -0. -0. -0.	.80315 .54645 .57932 .73577 .53036 .73577 .53036	

Second order perturbation theory analysis of Fock-matrix for syn/syn-orthovanadium acid with hydron in NBO-basis(threshold for printing: 0.50 kcal/mol)

5 Hydrates of *cis*-Dioxidovanadium(V)

5.1 cis-Dioxidovanadium(V) dihydrate

Figure S4. Calculated minimum structure of *cis*-dioxidovanadium(V) dihydrate.

(*i*) B3LYP/6-311++G**//B3LYP/6-311++G**

Standard	orientation:				
Center	Atomic	Atomic	Coo	rdinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	8	0	-0.000037	1.020701	-1.278666
2	23	0	-0.000006	0.108535	-0.000007
3	8	0	1.750136	-0.923131	-0.000403
4	8	0	0.000109	1.019392	1.279589
5	8	0	-1.750181	-0.923075	-0.000325
6	1	0	-2.310674	-1.011412	-0.787286
7	1	0	-2.310442	-1.012248	0.786707
8	1	0	2.310524	-1.011710	-0.787410
9	1	0	2.310506	-1.012039	0.786582
Zero-poin	t correction=	=	0	.057362 (Hart:	ree/Particle)
Thermal c	correction to	Energy=	0	.065483	
Thermal c	correction to	Enthalpy=	0	.066428	
Thermal c	correction to	Gibbs Free H	Energy= 0	.025237	
Sum of el	ectronic and	zero-point B	Energies=	-1247.2	216041
Sum of el	ectronic and	thermal Ener	rgies=	-1247.2	207920
Sum of el	ectronic and	thermal Enth	nalpies=	-1247.2	206975
Sum of el	ectronic and	thermal Free	e Energies=	-1247.2	248166
Version=E RMSF=1.40	M64L-G03RevE 9e-06 PG=C01	.01\State=1-A [X(H404V1)]\	A\HF=-1247.2 \NImag=0\\@.	73403\RMSD=9.3	107e-10\

S14

(*ii*) B2PLYP/6-311++G**//B2PLYP/6-311++G**

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	8	0	-0.000024	1.044213	-1.300751
2	23	0	-0.000000	0.074397	-0.000001
3	8	0	-1.808400	-0.905797	0.000019
4	8	0	1.808400	-0.905797	-0.000004
5	8	0	0.000024	1.044233	1.300736
6	1	0	-2.374368	-0.981455	-0.781149
7	1	0	-2.374340	-0.981507	0.781203
8	1	0	2.374328	-0.981541	-0.781194
9	1	0	2.374380	-0.981426	0.781159
Zero-point	t correction=	:	0.(056567 (Hart:	ree/Parti

Standard orientation:

Zero-point correction=0.056567 (Hartree/Particle)Thermal correction to Energy=0.064943Thermal correction to Enthalpy=0.065887Thermal correction to Gibbs Free Energy=0.024040Sum of electronic and zero-point Energies=-1246.746840Sum of electronic and thermal Energies=-1246.738464Sum of electronic and thermal Enthalpies=-1246.737520Sum of electronic and thermal Free Energies=-1246.779367

Version=EM64L-G09RevD.01\State=1-A\HF=-1246.3432166\MP2=-1246.8034069\ RMSD=3.929e-09\RMSF=7.021e-06 PG=C01 [X(H404V1)]\NImag=0\\@.

(*iii*) NBO-analysis – B3LYP/6-31G*// B3LYP/6-311++G**

===			===:	====				
No.	(Occupan	су)]	Bond	d orbital/	Coefficient	s/ Hybrids	
===			===:	====				
1.	(1.91585)	BD (1) O	1	- v	2			
	(69.86%)	0.8358*	0	1	s(9.46%)	p(90.33%)	d(0.21%)	
	(30.14%)	0.5490*	V	2	s(3.95%)	p(4.73%)	d(89.79%)	f(1.53%)
2.	(1.87616)	BD (2) O	1.	- v	2			
	(86.12%)	0.9280*	0	1	s(0.05%)	p(99.84%)	d(0.11%)	
	(13.88%)	0.3726*	V	2	s(0.04%)	p(27.25%)	d(66.46%)	f(6.24%)
З.	(1.98614)	BD (3) O	1	- v	2			
	(72.77%)	0.8531*	0	1	s(0.00%)	p(99.87%)	d(0.13%)	
	(27.23%)	0.5218*	V	2	s(0.00%)	p(1.11%)	d(98.71%)	f(0.18%)
4.	(1.91589)	BD (1) V	2.	- 0	5			
	(30.14%)	0.5490*	V	2	s(3.95%)	p(4.72%)	d(89.80%)	f(1.53%)
	(69.86%)	0.8358*	0	5	s(9.46%)	p(90.33%)	d(0.21%)	
5.	(1.87616)	BD (2) V	2.	- 0	5			
	(13.88%)	0.3726*	V	2	s(0.04%)	p(27.25%)	d(66.46%)	f(6.24%)
	(86.12%)	0.9280*	0	5	s(0.05%)	p(99.84%)	d(0.11%)	
6.	(1.98614)	BD (3) V	2.	- 0	5			
	(27.23%)	0.5218*	V	2	s(0.00%)	p(1.11%)	d(98.71%)	f(0.18%)
	(72.77%)	0.8531*	0	5	s(0.00%)	p(99.87%)	d(0.13%)	
24.	(1.97417)	LP (1) O	1		s(90.52%)	p(9.48%)	d(0.00%)	
25.	(1.97066)	LP (1) O	3		s(8.65%)	p(91.31%)	d(0.03%)	
26.	(1.87300)	LP (2) O	3		s(41.66%)	p(58.34%)	d(0.00%)	
27.	(1.97067)	LP (1) O	4		s(8.65%)	p(91.31%)	d(0.03%)	
28.	(1.87300)	LP (2) O	4		s(41.66%)	p(58.34%)	d(0.00%)	
29.	(1.97417)	LP (1) O	5		s(90.52%)	p(9.48%)	d(0.00%)	
28. 29. ===	(1.87300) (1.97417)	LP (2) O LP (1) O =======	4 5 		s(41.66%) s(90.52%) =======	p(58.34%) p(9.48%) ============	d(0.00%) d(0.00%) ============	

dioxidovanadium(V) dihydrate acid in NBO-basis(threshold for printing: 0.50 kcal/mol) _____ Donor NBO (i) Acceptor NBO (j) kcal/mol a.u. a.u. _____ within unit 1 24. LP (1) O 1 96. BD*(2) O 1- V 2 1.45 1.23 0.039 99. BD*(2) V 2- O 5 24. LP (1) O 1 4.68 1.23 0.070 4.68 1.23 0.070 96. BD*(2) O 1- V 2 99. BD*(2) V 2- O 5 29. LP (1) O 5 1.45 1.23 0.039 29. LP (1) O 5 from unit 1 to unit 2 None above threshold from unit 1 to unit 3 None above threshold from unit 2 to unit 1 0.62 0.51 0.016 25. LP (1) O 3 95. BD*(1) O 1- V 2 25. LP (1) 0 3 96. BD*(2) O 1- V 2 0.54 0.68 0.018 25. LP (1) O 3 97. BD*(3) O 1- V 2 1.27 0.40 0.020 98. BD*(1) V 2- O 5 99. BD*(2) V 2- O 5 25. LP (1) O 3 0.62 0.51 0.016 25. LP (1) O 3 0.54 0.68 0.018

 25. LP (1) 0 3
 99. BD* (2) V 2= 0 3

 25. LP (1) 0 3
 100. BD* (3) V 2= 0 5

 26. LP (2) 0 3
 95. BD* (1) 0 1= V 2

 26. LP (2) 0 3
 96. BD* (2) 0 1= V 2

 26. LP (2) 0 3
 97. BD* (3) 0 1= V 2

 26. LP (2) 0 3
 97. BD* (3) 0 1= V 2

 1.27 0.40

 26. LP (2) 0 3
 95. BD*(1) 0 1- V 2
 1.70
 0.75
 0.032

 26. LP (2) 0 3
 96. BD*(2) 0 1- V 2
 0.12
 0.91
 0.010

 26. LP (2) 0 3
 97. BD*(3) 0 1- V 2
 6.30
 0.63
 0.057

 26. LP (2) 0 3
 97. BD*(3) 0 1- V 2
 6.30
 0.63
 0.057

 26. LP (2) 0 3
 98. BD*(1) V 2- 0 5
 1.70
 0.75
 0.032

 26. LP (2) 0 3
 98. BD*(1) V 2- 0 5
 1.70
 0.75
 0.032

 26. LP (2) 0 3
 99. BD*(2) V 2- 0 5
 0.13
 0.91
 0.010

 26. LP (2) 0 3
 100. BD*(3) V 2- 0 5
 6.29
 0.63
 0.057

 within unit 2 None above threshold from unit 2 to unit 3 None above threshold from unit 3 to unit 1

 27. LP (1) 0 4
 95. BD*(1) 0 1- V 2
 0.62
 0.51
 0.016

 27. LP (1) 0 4
 96. BD*(2) 0 1- V 2
 0.54
 0.68
 0.018

 96. BD*(2) O 1- V 2 97. BD*(3) O 1- V 2 27. LP (1) O 4 1.27 0.40 0.020

 27. LP (1) 0 4
 98. BD*(1) V 2- 0 5

 27. LP (1) 0 4
 99. BD*(2) V 2- 0 5

 0.62 0.51 0.016 0.54 0.68 0.018

 27. LP (1) 0 4
 99. BD (2) V 2 - 0 5

 27. LP (1) 0 4
 100. BD* (3) V 2 - 0 5

 28. LP (2) 0 4
 95. BD* (1) 0 1 - V 2

 28. LP (2) 0 4
 96. BD* (2) 0 1 - V 2

 1.27
 0.40
 0.020

 1.70
 0.75
 0.032

 0.12
 0.91
 0.010
 28. LP (2) O 4 97. BD*(3) O 1- V 2 6.30 0.63 0.057 28. LP (2) O 4 98. BD*(1) V 2- O 5 1.70 0.75 0.032 0.12 0.91 0.010 6.29 0.63 0.057 99. BD*(2) V 2- O 5 28. LP (2) O 4 28. LP (2) 0 4 100. BD*(3) V 2- 0 5 from unit 3 to unit 2 None above threshold within unit 3 None above threshold _____

Second order perturbation theory analysis of Fock-matrix for cis-

	=====			
NBO			Occupancy	Energy / a.u.
Molecular uni 1. BD (1) O 2. BD (2) O 3. BD (3) O 4. BD (1) V 5. BD (2) V 6. BD (3) V	t 1 1- V 1- V 1- V 2- 0 2- 0 2- 0	(O2V) 2 2 5 5 5 5	1.91585 1.87616 1.98614 1.91589 1.87616 1.98614	-0.71351 -0.48381 -0.54369 -0.71354 -0.48381 -0.54369
Molecular uni Molecular uni	t 2 t 3 ======	(H2O) (H2O) ====================================		

5.2 *cis*-Dioxidovanadium(V) tetrahydrate

Figure S5 Calculated minimum structure of *cis*-dioxidovanadium(V) tetrahydrate.

B3LYP/6-311++G**//B3LYP/6-311++G**

Center	Atomic	Atomic	Coor	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Ζ
1	8	0	0.012929	-1.325915	-1.264705
2	23	0	0.002072	-0.385861	0.013552
3	8	0	0.004029	-1.325947	1.288440
4	8	0	2.077077	0.009112	-0.116878
5	8	0	-2.074742	-0.013828	-0.135938
6	8	0	-0.000192	1.611396	-1.238761
7	8	0	-0.021867	1.388838	1.420032
8	1	0	-2.546123	-0.694202	-0.638831
9	1	0	-2.574634	0.143005	0.677157
10	1	0	0.776912	1.776165	-1.788486
11	1	0	-0.767915	1.763168	-1.805187
12	1	0	-0.023057	2.319771	1.165041
13	1	0	-0.017331	1.321549	2.382939
14	1	0	2.556554	-0.662749	-0.623598
15	1	0	2.570064	0.158841	0.701760
Zero-noin	t correction	_	0	1082/0 (Hart:	ree/Particle
Thermal C	orrection to	- Enerav=	0.	121725	
Thermal C	orrection to	Enthalpy=	0.	122669	
Thermal c	orrection to	Gibbs Free F	lnerav= 0	070280	
Sum of el	ectronic and	zero-point E	nergies=	-1400 ⁻	148786
Sum of el	ectronic and	thermal Ener	mergres	-1400	135301
Sum of el	ectronic and	thermal Enth	alpies=	-1400	134357
Sum of el	ectronic and	thermal Free	Energies=	-1400	186747
000000000000000000000000000000000000000	000101110 0110	0110211101 1200	, 11019100	11001	200727
Version=E	M64L-G03RevE	.01\State=1-A	\HF=-1400.25	70266\RMSD=7	.710e-09\

Standard orientation:

Version=EM64L-G03RevE.01\State=1-A\HF=-1400.2570266\RMSD=7.710e-09\ RMSF=3.534e-05\PG=C01 [X(H806V1)]\NImag=0\\@. 6 Metavanadium Peroxoic Acid and its Conjugate Base

6.1 Metavanadium peroxoic acid – *end-on-*conformer

Figure S6. Calculated minimum structure of the *end-on*-conformer of metavanadium peroxoic acid.

(*i*) B3LYP/6-311++G**//B3LYP/6-311++G**

 $RMSF=2.876e-06\PG=C01 [X(H1O4V1)]\NImag=0\@.$

Center	Atomic	Atomic	Coord	inates (Angst	croms)
Number	Number	Туре	Х	Y	Z
1	8	0	-1.658138	-1.006897	0.218141
2	23	0	-0.483514	-0.004797	-0.163018
3	8	0	1.200629	-0.676399	0.003492
4	8	0	2.308777	0.226638	0.039480
5	8	0	-0.834113	1.512587	0.151800
6	1	0	2.983578	-0.337115	0.446104
Zero-poin Thermal c Thermal c Sum of el Sum of el Sum of el Sum of el	t correction orrection to orrection to orrection to ectronic and ectronic and ectronic and	= Energy= Enthalpy= Gibbs Free E zero-point E thermal Ener thermal Enth thermal Free	0.0 0.0 nergy= -0.0 nergies= gies= alpies= Energies=	022997 (Hart) 029518 030462 008186 -1245.5 -1245.5 -1245.5	ree/Particle) 557398 550877 549932 588581
Version=E	M64L-G09RevD	.01\State=1-A	\HF=-1245.580)3947\RMSD=3.	.231e-09\

Standard orientation:

(*ii*) NBO-analysis – B3LYP/6-31G*// B3LYP/6-311++G**

===	===========		====	====				
No.	(Occupan	су)	F	Bond	d orbital/	Coefficient	.s/ Hybrids	
1.	(1.91683)	BD (1) O	1-	- v	2			
	(78.31%)	0.8849*	0	1	s(3.55%)	p(96.31%)	d(0.14%)	
	(21.69%)	0.4658*	V	2	s(1.96%)	(%66.8)g	d(88.21%)	f(1.17%)
2.	(1.88120)	BD (2) O	1-	- v	2	1 (,	- (,	
	(74.41%)	0.8626*	0	1	s(4.81%)	p(95.02%)	d(0.17%)	
	(25.59%)	0.5058*	V	2	s(4.08%)	p(20.70%)	d(74.58%)	f(0.65%)
3.	(1.92071)	BD (1) V	2-	- 0	3	1 , ,	, , , , , , , , , , , , , , , , , , ,	· · · ·
	(19.37%)	0.4401*	V	2	s(1.89%)	p(22.50%)	d(74.25%)	f(1.36%)
	(80.63%)	0.8979*	0	3	s(0.78%)	p(99.11%)	d(0.11%)	
4.	(1.87618)	BD (2) V	2-	- 0	3	-		
	(23.41%)	0.4838*	V	2	s(17.34%)	p(13.10%)	d(68.67%)	f(0.88%)
	(76.59%)	0.8752*	0	3	s(6.45%)	p(93.38%)	d(0.17%)	
5.	(1.87365)	BD (3) V	2-	- 0	3			
	(18.16%)	0.4262*	V	2	s(5.00%)	p(17.92%)	d(74.93%)	f(2.15%)
	(81.84%)	0.9046*	0	3	s(1.24%)	p(98.63%)	d(0.12%)	
6.	(1.93607)	BD (1) V	2-	- 0	4			
	(10.54%)	0.3247*	V	2	s(5.15%)	p(34.05%)	d(60.14%)	f(0.65%)
	(89.46%)	0.9458*	0	4	s(1.21%)	p(98.74%)	d(0.05%)	
7.	(1.95122)	BD (2) V	2-	- 0	4			
	(11.04%)	0.3323*	V	2	s(22.38%)	p(11.49%)	d(65.00%)	f(1.13%)
	(88.96%)	0.9432*	0	4	s(13.45%)	p(86.48%)	d(0.07%)	
8.	(1.98882)	BD (1) O	4-	- 0	5			
	(50.82%)	0.7129*	0	4	s(14.19%)	p(85.65%)	d(0.16%)	
	(49.18%)	0.7013*	0	5	s(11.91%)	p(87.82%)	d(0.26%)	
23.	(1.97673)	LP (1) O	1		s(91.54%)	p(8.46%)	d(0.00%)	
24.	(1.66110)	LP (2) O	1		s(0.10%)	p(99.80%)	d(0.10%)	
25.	(1.97558)	LP (1) O	3		s(91.52%)	p(8.48%)	d(0.00%)	
26.	(1.97878)	LP (1) O	4		s(71.44%)	p(28.53%)	d(0.02%)	
27.	(1.99474)	LP (1) O	5		s(65.69%)	p(34.28%)	d(0.04%)	
28.	(1.96041)	LP (2) O	5		s(0.24%)	p(99.66%)	d(0.10%)	
===			====	====				

Second order perturbation theory analysis of Fock-matrix for the endon-conformer of metavanadium peroxoic acid in NBO-basis(threshold for printing: 0.50 kcal/mol)

Donor NBO (i)	Acceptor NBO (j)	kcal/mol	a.u.	a.u.
23. LP (1) 0 1 23. LP (1) 0 1 23. LP (1) 0 1 23. LP (1) 0 1 23. LP (1) 0 1 24. LP (2) 0 1 24. LP (2) 0 1 24. LP (2) 0 1 24. LP (2) 0 1	92. BD*(1) V 2- 0 3 93. BD*(2) V 2- 0 3 94. BD*(3) V 2- 0 3 96. BD*(2) V 2- 0 4 90. BD*(1) 0 1- V 2 92. BD*(1) V 2- 0 3 93. BD*(2) V 2- 0 3 94. BD*(3) V 2- 0 3	2.68 1.59 7.54 6.43 3.06 9.49 8.95 3.69	1.04 1.11 1.04 1.08 0.27 0.32 0.39 0.33	0.049 0.039 0.082 0.079 0.027 0.052 0.056 0.033
24. LP (2) O 1 25. LP (1) O 3 25. LP (1) O 3 26. LP (1) O 4 26. LP (1) O 4 26. LP (1) O 4 26. LP (1) O 4 26. LP (1) O 4 28. LP (2) O 5	96. BD*(2) V 2- 0 4 93. BD*(2) V 2- 0 3 96. BD*(2) V 2- 0 4 90. BD*(1) 0 1- V 2 93. BD*(2) V 2- 0 3 94. BD*(3) V 2- 0 3 95. BD*(1) V 2- 0 4	28.00 2.07 2.09 0.58 0.78 3.40 0.56 3.10	0.36 1.11 1.08 0.77 0.89 0.83 0.80 0.36	0.093 0.044 0.045 0.019 0.024 0.049 0.020 0.031

Natural bond orbital (NBO)-energies

NBO	Occupancy	Energy / a.u.	
1. BD (1) 0 1- V 2	1.91683	-0.40701	
2. BD (2) 0 1- V 2	1.88120	-0.43966	
3. BD (1) V 2- 0 3	1.92071	-0.35896	
4. BD (2) V 2- 0 3	1.87618	-0.47526	
5. BD (3) V 2- 0 3	1.87365	-0.35506	
6. BD (1) V 2- 0 4	1.93607	-0.37775	
7. BD (2) V 2- 0 4	1.95122	-0.53369	
8. BD (1) 0 4- 0 5	1.98882	-0.78748	
97.BD*(1) 0 4- 0 5	0.01578	0.07528	

6.2 Metavanadium peroxoic acid – *side-on-*conformer

Figure S7. Calculated minimum structure of the *side-on*-conformer of metavanadium peroxoic acid.

(*i*) B3LYP/6-311++G**//B3LYP/6-311++G**

Standar	ra orientation:				
Center	Atomic	Atomic	Coord	inates (Angs	troms)
Number	n Number	Туре	Х	Y	Z
1	23	0	-0.310860	-0.006668	-0.015557
2	8	0	-1.049253	1.398843	0.060069
3	8	0	1.388137	-0.209705	0.812963
4	8	0	1.623300	-0.049098	-0.637394
5	8	0	-1.327240	-1.222392	-0.103175
6	1	0	2.070227	0.812170	-0.701900
Zero-po	oint correction	= =	0.0	023988 (Hart	ree/Particle)
Thermal	correction to	Energy-	0.0)29/1/	
Thermal	correction to	Gibbs Free Er	nergy= -0.0	05874	
Sum of	electronic and	zero-point Er	nergies=	-1245.	570244
Sum of	electronic and	thermal Energ	gies=	-1245.	564515
Sum of	electronic and	thermal Entha	alpies=	-1245.	563570
Sum of	electronic and	thermal Free	Energies=	-1245.	600106

Version=AM64L-G03RevE.01\State=1-A\HF=-1245.5942316\RMSD=7.995e-09\RMSF=7.547e-07\PG=C01 [X(H104V1)]\\@.

Standard orientation:

(*ii*) NBO-analysis – B3LYP/6-31G*// B3LYP/6-311++G**

===	=========	========		============		============	============
No.	(Occupan	су) 	Bon	d orbital/	Coefficient	s/ Hybrids	
1.	(1.97244)	BD (1) V	1- O	2			
	(30.49%)	0.5522*	V 1	s(1.48%)	p(0.32%)	d(98.08%)	f(0.11%)
	(69.51%)	0.8337*	0 2	s(6.74%)	p(93.06%)	d(0.20%)	
2.	(1.92555)	BD (2) V	1- 0	2	T- (1000000)		
	(22,00%)	0 4690*	v 1	_ s(3 42%)	n(19 25%)	d(76 78%)	f(0 55%)
	(22.000)	0 8832*	0 2	s(0 33%)	p(19,200) p(99,55%)	d(0, 12%)	1(0.000)
З	(1 92810)	BD (1) V	1- 0	3	P(33:000)	a(0.120)	
•••	(12.96%)	0.3600*	v 1	s (20, 35%)	p(20.26%)	d(58,70%)	f(0,69%)
	(87 04%)	0 9329*	03	s(6,73%)	p(93, 14%)	d(0, 13%)	2 (0.050)
4	(1 97773)	BD (1) V	1- 0	5	P(33.110)	a (0••±00)	
- •	(31 68%)	0 5628*	v 1	s(2 45%)	n(0, 47%)	d(96 93%)	f(0 14%)
	(68 32%)	0.8266*	0 5	s(7, 57%)	p(0, 1, 0) p(92, 22%)	d(0, 21%)	I (0.110)
5	(1 98682)	BD (2) V	1- 0	5	P(92.220)	a(0.210)	
•••	(1986%)	0 4457*	v 1	s(1 24%)	n(1 71%)	d(96 80%)	f(0,25%)
	(80 14%)	0 8952*	• <u>+</u> 0 5	s(0.84%)	p(10, 10, 10)	d(0 10%)	1(0.200)
6	(1 89080)	BD (3)	v 1_	0 5(0.048)	P()).00%)	a(0.108)	
0.	(17 902)	0 1231*	v 1	マ (7 85%)	n(26, 168)	d(65, 108)	F(0 90%)
	(17, 508) (82, 108)	0.4251	v ⊥ O 5	s(1,003%)	p(20.108)	d(0.5,10.8)	1(0.508)
7	(02.108) (1 97755)	BD (1) 0	3-0	Δ	P()).00%)	u(0.110)	
/ •	(1, 5, 7, 5, 5, 5, 7, 5, 5, 7, 5, 5, 7, 5, 5, 7, 5, 5, 7, 5, 5, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,	0 6448*		न २ (६ १९२)	n(93 528)	d (0 30%)	
	(58 43%)	0.7644*	0 4	s(12, 73%)	p(93.32.8) p(87.06%)	d(0.21%)	
22	$(1 \ 97116)$		2	s(12.75%)	p(0,000) p(8,722)	d(0.218)	
22.	(1.5)(10)		2	$S(J_1, 20^{\circ})$	p(0.72%)	d(0.008)	
23.	(1.09072)	IP(2) O	2	S(1.046) c(87 219)	p(90.20%) p(12.78%)	d(0.105)	
24. 25	(1 93867)		3	S(0/.210)	P(12.100)	d(0,010)	
25.	(1 99022)	$L_{P}(2) = 0$	4	s(53,752)	P(33.020) n(46.192)	d(0,06%)	
20.	(1 01020)		-1	a(10, 70%)	P(40.130)	d(0.000)	
21.	(1,04920)		4 5	S(10.105)	P(02.143)	d(0.005)	
20.	(1.9/000)	(I) U	ن 			u(0.00%)	

Donor NBO (i)	Acceptor NBO (j)	kcal/mol	a.u.	a.u.
22. LP (1) 0 2	92. BD*(2) V 1- 0 2	0.83	1.00	0.026
22. LP (1) 0 2	93. BD*(1) V 1- O 3	3.21	1.09	0.055
22. LP (1) 0 2	95. BD*(2) V 1- O 5	5.35	0.95	0.068
22. LP (1) 0 2	96. BD*(3) V 1- O 5	4.73	1.05	0.065
23. LP (2) O 2	93. BD*(1) V 1- O 3	3.70	0.39	0.035
23. LP (2) O 2	94. BD*(1) V 1- O 5	4.32	0.29	0.034
23. LP (2) O 2	95. BD*(2) V 1- O 5	62.25	0.25	0.112
23. LP (2) O 2	96. BD*(3) V 1- O 5	6.88	0.35	0.046
25. LP (2) O 3	91. BD*(1) V 1- O 2	6.26	0.31	0.039
25. LP (2) O 3	92. BD*(2) V 1- O 2	1.60	0.33	0.021
25. LP (2) O 3	94. BD*(1) V 1- O 5	4.62	0.32	0.035
25. LP (2) O 3	95. BD*(2) V 1- O 5	0.52	0.28	0.011
25. LP (2) O 3	96. BD*(3) V 1- O 5	1.07	0.37	0.018
25. LP (2) O 3	98. BD*(1) O 4- H 6	1.17	0.71	0.026
26. LP (1) O 4	91. BD*(1) V 1- O 2	1.27	0.69	0.027
26. LP (1) O 4	92. BD*(2) V 1- O 2	1.29	0.72	0.028
26. LP (1) O 4	95. BD*(2) V 1- O 5	0.58	0.67	0.019
27. LP (2) O 4	91. BD*(1) V 1- O 2	0.53	0.47	0.014
27. LP (2) O 4	92. BD*(2) V 1- O 2	5.81	0.50	0.049
27. LP (2) O 4	93. BD*(1) V 1- O 3	1.99	0.59	0.031
27. LP (2) O 4	94. BD*(1) V 1- O 5	2.61	0.49	0.032
27. LP (2) O 4	95. BD*(2) V 1- O 5	12.55	0.45	0.069
27. LP (2) O 4	96. BD*(3) V 1- O 5	1.29	0.54	0.024
28. LP (1) O 5	91. BD*(1) V 1- O 2	0.52	0.98	0.020
28. LP (1) O 5	93. BD*(1) V 1- O 3	2.87	1.09	0.052
28. LP (1) O 5	96. BD*(3) V 1- O 5	0.83	1.05	0.027

Second order perturbation theory analysis of Fock-matrix for the *side-on*-conformer of metavanadium peroxoic acid in NBO-basis(threshold for printing: 0.50 kcal/mol)

Natural bond orbital (NBO)-energies

======= NBO				Occupancy	Energy / a.u.
1. BD (1) 2. BD (2) 3. BD (1) 4. BD (1) 5. BD (2) 6. BD (3) 7. BD (1) 97.BD*(1)	V 1- V 1- V 1- V 1- V 1- V 1- O 3- O 3-	- 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	2 2 3 5 5 5 5 4 4	1.97244 1.92555 1.92810 1.97773 1.98682 1.89080 1.97755 0.00416	-0.52019 -0.35134 -0.46638 -0.53921 -0.37863 -0.33391 -0.75641 0.00082

6.3 iso-Metavanadium peroxoic acid

Figure S8. Calculated minimum structure of the *iso*-metavanadium peroxoic acid.

(*i*) B3LYP/6-311++G**//B3LYP/6-311++G**

Standar	d orientation:					
Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	23	0	-0.157616	0.080495	-0.000012	
2	8	0	-0.575749	1.596072	0.00000	
3	8	0	1.424671	-0.325595	0.726490	
4	8	0	1.424691	-0.325628	-0.726468	
5	8	0	-1.513275	-1.067005	0.000013	
6	1	0	-2.457529	-0.874132	0.000001	
Zero-po	int correction=	=	0.0)22505 (Harts	ree/Particle)	
Thermal	correction to	Energy=	0.0)28358		
Thermal	correction to	Enthalpy=	0.0	029303		
Thermal	correction to	Gibbs Free E	nergy= -0.0	07133		
Sum of	electronic and	zero-point E	nergies=	-1245.5	596667	
Sum of	electronic and	thermal Ener	gies=	-1245.5	590814	
Sum of	electronic and	thermal Enth	alpies=	-1245.5	589870	
Sum of	electronic and	thermal Free	Energies=	-1245.0	626305	

Version=AM64L-G03RevE.01\State=1-A\HF=-1245.6191724\RMSD=4.475e-09\RMSF=2.397e-06\PG=C01 [X(H104V1)]\\@.

(*ii*) NBO-analysis – B3LYP/6-31G*// B3LYP/6-311++G**

===								
No.	(Occupan	су)		Bond	d orbital/	Coefficient	s/ Hybrids	
===	=======================================	===========	===	====			==============	
1.	(1.96961)	BD (1) O	1	- v	2			
	(68.76%)	0.8292*	0	1	s(8.83%)	p(90.94%)	d(0.23%)	
	(31.24%)	0.5590*	V	2	s(4.64%)	p(0.36%)	d(94.85%)	f(0.16%)
2.	(1.91529)	BD (2) O	1	- v	2			
	(81.67%)	0.9037*	0	1	s(0.21%)	p(99.68%)	d(0.11%)	
	(18.33%)	0.4281*	V	2	s(9.64%)	p(8.54%)	d(81.16%)	f(0.67%)
3.	(1.98330)	BD (3) O	1	- v	2			
	(76.66%)	0.8755*	0	1	s(0.00%)	p(99.88%)	d(0.12%)	
	(23.34%)	0.4831*	V	2	s(0.00%)	p(2.36%)	d(97.45%)	f(0.19%)
4.	(1.96572)	BD (1) V	2	- 0	3			
	(16.09%)	0.4011*	V	2	s(2.64%)	p(3.23%)	d(93.99%)	f(0.13%)
	(83.91%)	0.9160*	0	3	s(15.41%)	p(84.52%)	d(0.07%)	
5.	(1.84650)	BD (1)	V	2- (o 4			
	(19.13%)	0.4373*	V	2	s(33.50%)	p(5.72%)	d(60.35%)	f(0.43%)
	(80.87%)	0.8993*	0	4	s(6.81%)	p(93.01%)	d(0.18%)	
6.	(1.84650)	BD (1) V	2	- 0	5			
	(19.12%)	0.4373*	V	2	s(33.50%)	p(5.72%)	d(60.34%)	f(0.43%)
	(80.88%)	0.8993*	0	5	s(6.81%)	p(93.01%)	d(0.18%)	
7.	(1.98495)	BD (1) O	3	- н	6			
	(75.57%)	0.8693*	0	3	s(26.98%)	p(72.89%)	d(0.13%)	
	(24.43%)	0.4942*	Η	6	s(100.00%)			
8.	(1.93976)	BD (1) O	4	- 0	5			
	(50.00%)	0.7071*	0	4	s(6.36%)	p(93.33%)	d(0.31%)	
	(50.00%)	0.7071*	0	5	s(6.36%)	p(93.33%)	d(0.31%)	
22.	(1.97008)	LP (1) O	1		s(90.95%)	p(9.05%)	d(0.00%)	
23.	(1.94765)	LP (1) O	3		s(57.65%)	p(42.29%)	d(0.06%)	
24.	(1.80872)	LP (2) O	3		s(0.00%)	p(99.94%)	d(0.06%)	
25.	(1.97705)	LP (1) O	4		s(86.54%)	p(13.46%)	d(0.01%)	
26.	(1.86005)	LP (2) O	4		s(0.47%)	p(99.44%)	d(0.09%)	
27.	(1.97705)	LP (1) O	5		s(86.54%)	p(13.46%)	d(0.01%)	
28.	(1.86006)	LP (2) O	5		s(0.47%)	p(99.44%)	d(0.09%)	
98.	(0.04142)	BD*(1) O	4	- 0	5			
	(50.00%)	0.7071*	0	4	s(6.36%)	p(93.33%)	d(0.31%)	
	(50.00%)	-0.7071*	0	5	s(6.36%)	p(93.33%)	d(0.31%)	
===	===========		===	====				

Second order perturbation theory analysis of Fock-matrix for *iso*-metavanadium peroxoic acid in NBO-basis(threshold for printing: 0.50 kcal/mol)

Donor NBO (i)	Acceptor NBO (j)	kcal/mol	a.u.	a.u.
22. LP (1) 0 1 22. LP (1) 0 1 22. LP (1) 0 1 23. LP (1) 0 3 23. LP (1) 0 3	92. BD*(2) O 1- V 2 95. BD*(1) V 2- O 4 96. BD*(1) V 2- O 5 91. BD*(1) O 1- V 2	3.25 4.69 4.69 1.76	1.04 1.11 1.11 0.69	0.054 0.067 0.067 0.031
23. LP (1) 0 3 23. LP (1) 0 3 23. LP (1) 0 3 24. LP (2) 0 3	92. BD*(2) 0 1- V 2 95. BD*(1) V 2- 0 4 96. BD*(1) V 2- 0 5 93. BD*(3) 0 1- V 2	1.65 1.65 9.04	0.77 0.77 0.25	0.033 0.033 0.043
24. LP (2) O 3	95. BD*(1) V 2- O 4	5.35	0.41	0.042
24. LP (2) O 3	96. BD*(1) V 2- O 5	5.35	0.41	0.042
25. LP (1) O 4	93. BD*(3) O 1- V 2	0.56	0.81	0.020
25. LP (1) O 4	94. BD*(1) V 2- O 3	1.52	0.85	0.033
25. LP (1) 0 4	95. BD*(1) V 2- 0 4	1.22	0.97	0.032
25. LP (1) 0 4	98. BD*(1) 0 4- 0 5	0.62	0.95	0.022
26. LP (2) 0 4	91. BD*(1) 0 1- V 2	8.49	0.33	0.048
26. LP (2) 0 4	92. BD*(2) O 1- V 2	0.84	0.34	0.015
26. LP (2) 0 4	93. BD*(3) O 1- V 2	6.78	0.24	0.037
26. LP (2) 0 4	94. BD*(1) V 2- O 3	7.82	0.29	0.043
27. LP (1) 0 5	93. BD*(3) O 1- V 2	0.56	0.81	0.020
27. LP (1) 0 5	94. BD*(1) V 2- O 3	1.52	0.85	0.033
27. LP (1) 0 5	96. BD*(1) V 2- O 5	1.22	0.97	0.032
27. LP (1) 0 5	98. BD*(1) O 4- O 5	0.62	0.95	0.022
28. LP (2) 0 5	91. BD*(1) O 1- V 2	8.49	0.33	0.048
28. LP (2) O 5	92. BD*(2) O 1- V 2	0.84	0.34	0.015
28. LP (2) O 5	93. BD*(3) O 1- V 2	6.78	0.24	0.037
28. LP (2) O 5	94. BD*(1) V 2- O 3	7.82	0.29	0.043

Natural bond orbital (NBO)-energies

1. BD (1) 0 1- V 2 1.96961 -0.58755 2. BD (2) 0 1- V 2 1.91529 -0.37318 3. BD (3) 0 1- V 2 1.98330 -0.39109 4. BD (1) V 2- 0 3 1.96572 -0.56766 5. BD (1) V 2- 0 4 1.84650 -0.47849 6. BD (1) V 2- 0 5 1.84650 -0.47848 7. BD (1) 0 3- H 6 1.98495 -0.79730			==== NBO					 Occupancy	Energy / a.u.	
8. BD (1) 0 4- 0 5 1.93976 -0.66900 98.BD*(1) 0 4- 0 5 0.04142 0.03991	1. H 2. H 3. H 4. H 5. H 6. H 7. H 8. H 98.H	=== 3D 3D 3D 3D 3D 3D 3D 3D 3D	(1) (2) (3) (1) (1) (1) (1) (1) (1)	0 0 V V V 0 0 0	1- 1- 2- 2- 3- 4- 4-	V V O O H O O	2 2 2 3 4 5 6 5 5	1.96961 1.91529 1.98330 1.96572 1.84650 1.84650 1.98495 1.93976 0.04142	-0.58755 -0.37318 -0.39109 -0.56766 -0.47849 -0.47848 -0.79730 -0.66900 0.03991	

6.4 Metavanadium peroxoic acid conjugate base

Figure S9. Calculated minimum structure of metavanadium peroxoic acid conjugate base.

(*i*) B3LYP/6-311++G**//B3LYP/6-311++G**

Standard o	prientation:					
Center	Atomic	Atomic	Coordi	inates (Angst	(Angstroms)	
Number	mber Number Type		Х	Y	Z	
1	8	0	-1.597798	-1.121079	0.000068	
2	23	0	-0.415339	0.007673	-0.000142	
3	8	0	1.229243	-0.595703	0.000287	
4	8	0	2.399356	0.113762	-0.000114	
5	8	0	-0.836700	1.580961	0.000166	
Zero-point Thermal co Thermal co Sum of ele Sum of ele Sum of ele Sum of ele	t correction prrection to prrection to prrection to ectronic and ectronic and ectronic and	= Energy= Enthalpy= Gibbs Free E zero-point E thermal Ener thermal Enth thermal Free	0.0 0.0 nergy= -0.0 nergies= gies= alpies= Energies=	010677 (Hart) 016580 017524 019742 -1245.0 -1245.0 -1245.0	ree/Particle) 032407 026504 025560 062826	
Version=EN	464L-G09RevD	.01\State=1-A	\HF=-1245.043	30835\RMSD=1	.471e-09\	

RMSF=4.054e-06\PG=C01 [X(04V1)]\NImag=0\\@.

(*ii*) NBO-analysis – B3LYP/6-31G*// B3LYP/6-311++G**

=== No.	(Occupan	======= су) 	==== E	==== 30nc	d orbital/	Coefficient	s/ Hybrids	
1.	(1.94008) (80.34%) (19.66%)	BD (1) O 0.8963*	1- 0 V	- v	2 s(0.00%)	p(99.91%)	d(0.09%)	f(0 31%)
2.	(1.99099) (72.46%)	BD (2) O 0.8512*	1 -	- v 1	2 s(9.49%)	p(90.36%)	d(0.15%)	1(0.31%)
3.	(27.54%) (1.93125)	0.5248* BD (1) V	V 2-	2 - 0	s(2.69%) 3	p(0.55%)	d(96.63%)	f(0.13%)
Д	(18.43%) (81.57%) (1.99046)	0.4293* 0.9032* BD (2) V	V 0 2-	2 3	s(0.00%) s(0.00%) 3	p(35.32%) p(99.91%)	d(64.30%) d(0.09%)	f(0.38%)
- ·	(28.10%) (71.90%)	0.5301* 0.8479*	V O	2 3	s(2.31%) s(8.78%)	p(0.49%) p(91.07%)	d(97.07%) d(0.15%)	f(0.14%)
5.	(1.94164) (15.60%)	BD (1) V 0.3950*	2- V	- o 2	4 s(0.00%)	p(32.52%)	d(67.19%)	f(0.30%)
6.	(1.99145) (19.77%)	BD (2) V 0.4446*	2- V	- o 2	4 s(1.10%)	p(0.29%)	d(0.03%)	f(0.13%)
7.	(80.23%) (1.98178)	0.8957* BD (1) O	0 4 -	4 - o	s(9.83%) 5	p(90.09%)	d(0.08%)	
21.	(58.49%) (41.51%) (1.97648) (1.77910)	0.7648* 0.6443* LP (1) O LP (2) O	0 0 1 1	4 5	s(20.10%) s(11.15%) s(90.46%) s(0.03%)	p(79.77%) p(88.54%) p(9.54%) p(99.90%)	d(0.13%) d(0.31%) d(0.00%) d(0.06%)	
23. 24. 25.	(1.97340) (1.76586) (1.94575)	LP (1) O LP (2) O LP (1) O	3 3 4		s (90.98%) s (0.23%) s (70.33%)	p(9.02%) p(99.70%) p(29.65%)	d(0.00%) d(0.07%) d(0.02%)	
26. 27. 28.	(1.99302) (1.81985) (1.81552)	LP (1) O LP (2) O LP (3) O	5 5 5		s(89.51%) s(0.00%) s(0.03%)	p(10.49%) p(99.95%) p(99.93%)	d(0.00%) d(0.05%) d(0.04%)	

Second order perturbation theory analysis of Fock-matrix for metavanadium peroxoic acid conjugate base in NBO-basis(threshold for printing: 0.50 kcal/mol)

Donor NBO (i)	Acceptor NBO (j)	kcal/mol	a.u.	a.u.
22. LP (2) 0 1 22. LP (2) 0 1 22. LP (2) 0 1 24. LP (2) 0 3 24. LP (2) 0 3 25. LP (1) 0 4 25. LP (1) 0 4 27. LP (2) 0 5 28. LP (3) 0 5	91. BD*(2) O 1- V 2 93. BD*(2) V 2- O 3 95. BD*(2) V 2- O 4 91. BD*(2) V 2- O 4 91. BD*(2) O 1- V 2 95. BD*(2) V 2- O 4 91. BD*(2) O 1- V 2 93. BD*(2) V 2- O 3 94. BD*(1) V 2- O 4 95. BD*(2) V 2- O 4	0.83 23.45 35.15 30.91 30.51 1.81 4.86 16.34 13.42	0.27 0.28 0.24 0.28 0.24 0.29 0.24 0.79 0.79 0.79 0.19 0.21	0.014 0.074 0.083 0.084 0.078 0.035 0.057 0.050 0.050 0.049

Natural bond orbital (NBO)-energies

===:		NBO					Occupancy	======================================
1. 1 2. 1 3. 1 4. 1 5. 1 6. 1 7. 1 96.1	=== BD BD BD BD BD BD*	<pre>(1) (2) (1) (2) (1) (2) (1) (2) (1) (1) (1)</pre>	0 0 V V V V 0 0	1- 1- 2- 2- 2- 2- 4- 4-	V V O O O O O O	2 2 3 3 4 4 5 5 5	1.94008 1.99099 1.93125 1.99046 1.94164 1.99145 1.98178 0.01288	-0.13369 -0.32951 -0.13380 -0.32447 -0.16673 -0.32494 -0.60774 0.40574
===:		====	-==-	====	-===			

6.5 *iso*-Metavanadium peroxoic acid conjugate base

Figure S10. Calculated minimum structure of *iso*-metavanadium peroxoic acid conjugate base.

(*i*) B3LYP/6-311++G**//B3LYP/6-311++G**

Standard o	prientation:					
Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	23	0	-0.232429	-0.000004	-0.000001	
2	8	0	-1.120797	-1.364629	0.000001	
3	8	0	1.454892	-0.000010	-0.741514	
4	8	0	1.454892	-0.000009	0.741515	
5	8	0	-1.120753	1.364659	0.000001	
Zero-point	correction:	=	Ο.	011594 (Hart:	ree/Particle)	
Thermal co	prrection to	Energy=	0.	016816		
Thermal co	prrection to	Enthalpy=	0.	017760		
Thermal co	prrection to	Gibbs Free En	nergy= -0.	017492		
Sum of ele	ectronic and	zero-point E	nergies=	-1245.0	094509	
Sum of ele	ectronic and	thermal Ener	gies=	-1245.0	089287	
Sum of ele	ectronic and	thermal Entha	alpies=	-1245.0	088343	
Sum of ele	ectronic and	thermal Free	Energies=	-1245.2	123595	
Vorcion-N	AGAI - COBROTE	$01 \leq t > t > -1 - \lambda$	\ 45-1245 10	61032\DMCD-5	1100-	

Version=AM64L-G03RevE.01\State=1-A\HF=-1245.1061032\RMSD=5.110e-09\RMSF=3.836e-06\PG=C01 [X(04V1)]\\@.

(*ii*) NBO-analysis – B3LYP/6-31G*// B3LYP/6-311++G**

No.	Occupano (Occupano	======== су)	Bond	d orbital/	Coefficient	s/ Hybrids	
1.	(1.96453)	BD (1) V	1- 0	2			
	(26.48%)	0.5146*	V 1	s(1.06%)	p(0.73%)	d(98.11%)	f(0.10%)
	(73.52%)	0.8574*	0 2	s(8.50%)	p(91.33%)	d(0.17%)	· · · · ·
2.	(1.91422)	BD (2) V	1- O	2	1		
	(17.19%)	0.4146*	V 1	s(0.00%)	p(37.88%)	d(61.65%)	f(0.48%)
	(82.81%)	0.9100*	0 2	s(0.00%)	p(99.92%)	d(0.08%)	
3.	(1.87527)	BD (1) V	1- O	3	-		
	(14.61%)	0.3822*	V 1	s(36.53%)	p(13.23%)	d(49.80%)	f(0.45%)
	(85.39%)	0.9241*	03	s(7.84%)	p(92.04%)	d(0.12%)	
4.	(1.87527)	BD (1) V	1- O	4			
	(14.61%)	0.3822*	V 1	s(36.53%)	p(13.23%)	d(49.80%)	f(0.45%)
	(85.39%)	0.9241*	O 4	s(7.84%)	p(92.04%)	d(0.12%)	
5.	(1.97200)	BD (1) V	1- O	5			
	(26.94%)	0.5190*	V 1	s(1.63%)	p(1.10%)	d(97.13%)	f(0.14%)
	(73.06%)	0.8547*	05	s(8.64%)	p(91.19%)	d(0.17%)	
6.	(1.94901)	BD (2) V	1- O	5			
	(13.48%)	0.3671*	V 1	s(15.78%)	p(6.06%)	d(77.61%)	f(0.54%)
	(86.52%)	0.9302*	05	s(1.40%)	p(98.53%)	d(0.07%)	
7.	(1.91421)	BD (3) V	1- O	5			
	(17.19%)	0.4146*	V 1	s(0.00%)	p(37.88%)	d(61.65%)	f(0.48%)
	(82.81%)	0.9100*	05	s(0.00%)	p(99.92%)	d(0.08%)	
8.	(1.94607)	BD (1) O	3- O	4			
	(50.00%)	0.7071*	03	s(6.35%)	p(93.40%)	d(0.25%)	
	(50.00%)	0.7071*	O 4	s(6.35%)	p(93.40%)	d(0.25%)	
22.	(1.97237)	LP (1) O	2	s(89.95%)	p(10.05%)	d(0.00%)	
23.	(1.72684)	LP (2) O	2	s(1.53%)	p(98.39%)	d(0.08%)	
24.	(1.98099)	LP (1) O	3	s(85.95%)	p(14.04%)	d(0.00%)	
25.	(1.91907)	LP (2) O	3	s(0.00%)	p(99.94%)	d(0.06%)	
26.	(1.98099)	LP (1) O	4	s(85.95%)	p(14.04%)	d(0.00%)	
27.	(1.91907)	LP (2) O	4	s(0.00%)	p(99.94%)	d(0.06%)	
28.	(1.97237)	LP (1) O	5	s(89.95%)	p(10.05%)	d(0.00%)	

Donor NBO (i)	Acceptor NBO (j)	kcal/mol	a.u.	a.u.
22. LP (1) O 2	91. BD*(1) V 1- O 3	6.11	1.07	0.074
22. LP (1) O 2	92. BD*(1) V 1- O 4	6.11	1.07	0.074
22. LP (1) O 2	94. BD*(2) V 1- O 5	12.21	0.98	0.106
23. LP (2) O 2	91. BD*(1) V 1- O 3	1.21	0.39	0.020
23. LP (2) O 2	92. BD*(1) V 1- O 4	1.21	0.39	0.020
23. LP (2) O 2	93. BD*(1) V 1- O 5	2.85	0.29	0.027
23. LP (2) O 2	94. BD*(2) V 1- O 5	59.43	0.31	0.122
24. LP (1) O 3	90. BD*(2) V 1- O 2	0.69	0.88	0.023
24. LP (1) O 3	91. BD*(1) V 1- O 3	1.06	0.97	0.030
24. LP (1) O 3	92. BD*(1) V 1- O 4	0.66	0.97	0.023
24. LP (1) O 3	93. BD*(1) V 1- O 5	0.50	0.86	0.019
24. LP (1) O 3	95. BD*(3) V 1- O 5	0.69	0.88	0.023
25. LP (2) O 3	89. BD*(1) V 1- O 2	7.51	0.30	0.042
25. LP (2) O 3	90. BD*(2) V 1- O 2	1.72	0.32	0.021
25. LP (2) O 3	93. BD*(1) V 1- O 5	7.62	0.30	0.043
25. LP (2) O 3	95. BD*(3) V 1- O 5	1.72	0.32	0.021
26. LP (1) O 4	90. BD*(2) V 1- O 2	0.69	0.88	0.023
26. LP (1) O 4	91. BD*(1) V 1- O 3	0.66	0.97	0.023
26. LP (1) O 4	92. BD*(1) V 1- O 4	1.06	0.97	0.030
26. LP (1) O 4	93. BD*(1) V 1- O 5	0.50	0.86	0.019
26. LP (1) O 4	95. BD*(3) V 1- O 5	0.69	0.88	0.023
27. LP (2) O 4	89. BD*(1) V 1- O 2	7.51	0.30	0.042
27. LP (2) O 4	90. BD*(2) V 1- O 2	1.72	0.32	0.021
27. LP (2) O 4	93. BD*(1) V 1- O 5	7.62	0.30	0.043
27. LP (2) O 4	95. BD*(3) V 1- O 5	1.72	0.32	0.021
28. LP (1) O 5	91. BD*(1) V 1- O 3	5.72	1.07	0.072
28. LP (1) O 5	92. BD*(1) V 1- O 4	5.72	1.07	0.072
28. LP (1) 0 5	94. BD*(2) V 1- O 5	3.46	0.98	0.056

Second order perturbation theory analysis of Fock-matrix for *iso*-metavanadium peroxoic acid conjugate base in NBO-basis(threshold for printing: 0.50 kcal/mol)

Natural bond orbital (NBO)-energies

NBO	Occupancy	Energy / a.u.
1. BD (1) V 1- 0 2	1.96453	-0.29678
2. BD (2) V 1- 0 2	1.91422	-0.11641
3. BD (1) V 1- 0 3	1.87527	-0.24901
4. BD (1) V 1- 0 4	1.87527	-0.24901
5. BD (1) V 1- 0 5	1.97200	-0.30283
6. BD (2) V 1- 0 5	1.94901	-0.14716
7. BD (3) V 1- 0 5	1.91421	-0.11640
8. BD (1) 0 3- 0 4	1.94607	-0.42145
96.BD*(1) 0 3- 0 4	0.03439	0.25587

7 Water Tetramer and Hydronium

7.1 Water tetramer

Figure S11. Calculated minimum structure of the water tetramer.

Center Number	Atomic Number	Atomic Type	Co X	ordinate	 s (Angs Y	stroms)
1	8	0	1.47573	8 -1.2	59589	-0.090928
2	1	0	1.54560	2 -0.28	30438	-0.033546
3	8	0	1.26945	6 1.4	58206	0.087436
4	1	0	-0.29178	7 -1.5	53352	-0.079322
5	8	0	-1.26982	5 -1.4	58690	-0.085744
6	1	0	0.29149	0 1.5	53337	0.077172
7	8	0	-1.47559	6 1.2	59308	0.088885
8	1	0	-1.54560	9 0.28	30253	0.029501
9	1	0	2.11444	7 -1.63	L3419	0.534071
10	1	0	-2.11570	4 1.63	L4785	-0.533743
11	1	0	-1.60588	9 -2.0	77864	0.577553
12	1	0	1.60927	4 2.08	32824	-0.568874
Zero-poin	t correction=	=		0.098501	(Hartı	ree/Particle)
Thermal c	orrection to	Energy=		0.108340		
Thermal c	orrection to	Enthalpy=		0.109284		
Thermal c	orrection to	Gibbs Free E	lnergy=	0.064836		
Sum of el	ectronic and	zero-point E	Inergies=		-305.7	782999
Sum of el	ectronic and	thermal Ener	rgies=		-305.7	773160
Sum of el	ectronic and	thermal Enth	alpies=		-305.7	772216
Sum of el	ectronic and	thermal Free	e Energies=		-305.8	316664
Version=A	M64L-G03RevE	.01\State=1-A	A\HF=-305.8	815001\ri	ASD=1.2	268e-09\
KMSF=3.04	8e-05\PG=C01	[X(H804)]\NI	.mag=U∖∖⊍.			

B3LYP/6-311++G**//B3LYP/6-311++G**

Standard orientation:

7.2 Hydronium

Figure S12. Calculated minimum structure of hydronium.

B3LYP/6-311++G**//B3LYP/6-311++G**

Center Number Atomic Number Atomic Type Coor X 1 8 0 -0.000269 2 1 0 0.459282 3 1 0 -0.985615 4 1 0 0.525586 5 8 0 1.336381 6 8 0 -2.514934 7 8 0 1.178833 8 1 0 1.680940 9 1 0 -3.169928 10 1 0 1.488770 11 1 0 -2.989521 12 1 0 1.385331 Zero-point correction= 0 Thermal correction to Energy= 0 1.385331 Thermal correction to Energy= 0 Thermal correction to Gibbs Free Energy= 0 Sum of electronic and zero-point Energies= 0	dinates Y 0.00 0.87 -0.03 -0.83 -2.13 -0.09 2.22 -2.68 -0.11 2.80 -0.12	(Angstron 0029 2481 8265 4096 2160 0942 3083 9319 0960	ms) Z 0.370728 0.142283 0.142257 0.142200 0.100016 0.100070 0.100008 0.607744
1 8 0 -0.000269 2 1 0 0.459282 3 1 0 -0.985615 4 1 0 0.525586 5 8 0 1.336381 6 8 0 -2.514934 7 8 0 1.178833 8 1 0 1.680940 9 1 0 -3.169928 10 1 0 1.488770 11 1 0 -2.989521 12 1 0 1.385331	0.00 0.87 -0.03 -0.83 -2.13 -0.09 2.22 -2.68 -0.11 2.80 -0.12	0029	0.370728 0.142283 0.142257 0.142200 0.100016 0.100070 0.100008 0.607744
2 1 0 0.459282 3 1 0 -0.985615 4 1 0 0.525586 5 8 0 1.336381 6 8 0 -2.514934 7 8 0 1.178833 8 1 0 1.680940 9 1 0 -3.169928 10 1 0 1.488770 11 1 0 -2.989521 12 1 0 1.385331 Zero-point correction= 0 Thermal correction to Energy= 0 Thermal correction to Energy= 0 Thermal correction to Energy= 0 Sum of electronic and zero-point Energies= 0	0.87 -0.03 -0.83 -2.13 -0.09 2.22 -2.68 -0.11 2.80 -0.12	2481 8265 4096 2160 0942 3083 9319	0.142283 0.142257 0.142200 0.100016 0.100070 0.100008 0.607744
3 1 0 -0.985615 4 1 0 0.525586 5 8 0 1.336381 6 8 0 -2.514934 7 8 0 1.178833 8 1 0 1.680940 9 1 0 -3.169928 10 1 0 1.488770 11 1 0 -2.989521 12 1 0 1.385331 Zero-point correction= 0 Thermal correction to Energy= 0 Thermal correction to Energy= 0 Thermal correction to Gibbs Free Energy= 0 Sum of electronic and zero-point Energies= 0	-0.03 -0.83 -2.13 -0.09 2.22 -2.68 -0.11 2.80 -0.12	8265 4096 2160 0942 3083 9319	0.142257 0.142200 0.100016 0.100070 0.100008 0.607744
4 1 0 0.525586 5 8 0 1.336381 6 8 0 -2.514934 7 8 0 1.178833 8 1 0 1.680940 9 1 0 -3.169928 10 1 0 1.488770 11 1 0 -2.989521 12 1 0 1.605056 13 1 0 1.385331 Zero-point correction= 0 Thermal correction to Energy= 0 1.385331 Thermal correction to Energy= 0 Thermal correction to Energy= 0 0 Sum of electronic and zero-point Energies= 0 0	-0.83 -2.13 -0.09 2.22 -2.68 -0.11 2.80 -0.12	4096 - 1 2160 0942 3083 9319 - 1 0960 - 1	0.142200 0.100016 0.100070 0.100008 0.607744
5 8 0 1.336381 6 8 0 -2.514934 7 8 0 1.178833 8 1 0 1.680940 9 1 0 -3.169928 10 1 0 1.488770 11 1 0 -2.989521 12 1 0 1.605056 13 1 0 1.385331 Zero-point correction= 0 Thermal correction to Energy= 0 Thermal correction to Energy= 0 Thermal correction to Gibbs Free Energy= 0 Sum of electronic and zero-point Energies= 0	-2.13 -0.09 2.22 -2.68 -0.11 2.80 -0.12	2160 0942 3083 9319 -	0.100016 0.100070 0.100008 0.607744
6 8 0 -2.514934 7 8 0 1.178833 8 1 0 1.680940 9 1 0 -3.169928 10 1 0 1.488770 11 1 0 -2.989521 12 1 0 1.605056 13 1 0 1.385331 Zero-point correction= 0 Thermal correction to Energy= 0 Thermal correction to Energy= 0 Thermal correction to Energy= 0 Sum of electronic and zero-point Energies= 0	-0.09 2.22 -2.68 -0.11 2.80 -0.12	0942 3083 9319 -	0.100070 0.100008 0.607744
7 8 0 1.178833 8 1 0 1.680940 9 1 0 -3.169928 10 1 0 1.488770 11 1 0 -2.989521 12 1 0 1.605056 13 1 0 1.385331 Zero-point correction= 0 Thermal correction to Energy= 0 Thermal correction to Energy= 0 Thermal correction to Energy= 0 Sum of electronic and zero-point Energies= 0	2.22 -2.68 -0.11 2.80 -0.12	3083 (9319 - (0960 - (0.100008
8 1 0 1.680940 9 1 0 -3.169928 10 1 0 1.488770 11 1 0 -2.989521 12 1 0 1.605056 13 1 0 1.385331 Zero-point correction= 0 Thermal correction to Energy= 0 Thermal correction to Energy= 0 Thermal correction to Gibbs Free Energy= 0 Sum of electronic and zero-point Energies= 0	-2.68 -0.11 2.80 -0.12	9319 - 1 0960 - 1	0.607744
9 1 0 -3.169928 10 1 0 1.488770 11 1 0 -2.989521 12 1 0 1.605056 13 1 0 1.385331 Zero-point correction= 0 Thermal correction to Energy= 0 Thermal correction to Energy= 0 Thermal correction to Gibbs Free Energy= 0 Sum of electronic and zero-point Energies=	-0.11 2.80 -0.12	0960 -	
10 1 0 1.488770 11 1 0 -2.989521 12 1 0 1.605056 13 1 0 1.385331 Zero-point correction= 0 Thermal correction to Energy= 0 0 Thermal correction to Energy= 0 0 Thermal correction to Gibbs Free Energy= 0 0 Sum of electronic and zero-point Energies= 0 0	2.80 -0.12	0 2 0 0	0.607493
11 1 0 -2.989521 12 1 0 1.605056 13 1 0 1.385331 Zero-point correction= 0 Thermal correction to Energy= 0 Thermal correction to Enthalpy= 0 Thermal correction to Gibbs Free Energy= 0 Sum of electronic and zero-point Energies=	-0.12	0424 -	0.607586
12101.60505613101.385331Zero-point correction=0Thermal correction to Energy=0Thermal correction to Enthalpy=0Thermal correction to Gibbs Free Energy=0Sum of electronic and zero-point Energies=		6895	0.938291
13101.385331Zero-point correction=0Thermal correction to Energy=0Thermal correction to Enthalpy=0Thermal correction to Gibbs Free Energy=0Sum of electronic and zero-point Energies=	-2.52	5333	0.938099
Zero-point correction= 0 Thermal correction to Energy= 0 Thermal correction to Enthalpy= 0 Thermal correction to Gibbs Free Energy= 0 Sum of electronic and zero-point Energies=	2.65	1881 (0.938250
<pre>Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= Version=AM64L-G03RevE.01\State=1-A\HF=-306.23 RMSF=1.348e-05\PG=C01 [X(H904)]\NImag=0\\@.</pre>	107579 .119188 .120133 .070256	-306.129 -306.118 -306.117 -306.167 SD=2.307	757 148 204 081 e-09\
it would char it has	hemistry ge baser done mu	r started metals By ch great alph Wal	l by sayin into golo doing so er thing do Emerso

S36

8 References

- HyperChem(TM) Professional 7.51, Hypercube, Inc., 1115 NW 4th Street, Gainesville, Florida 32601, US.
- (2) Gaussian 03, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.
- (3) O'Boyle, N.M., Banck, M., James, C.A., Morley, C., Vandermeersch T., Hutchison,
 G.R. (2011) Open Babel: An open chemical toolbox. *J. Cheminform.* 3, 33. DOI: 10.1186/1758-2946-3-33.
- (4) Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G.

Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.