## **Supplementary information**

## Exploring the Potential of ZIF-8@MCM-41-based Heterostructured Material for Battery-Type Electrodes for Supercapatteries

Josefa Dina Santos,<sup>a</sup> Jhonatam Pinheiro Mendonça,<sup>b</sup> Vanessa N. S. Campos,<sup>b</sup> Mayara M. Teixeira,<sup>b</sup> Anderson J. Schwanke,<sup>c</sup> Katia Bernardo-Gusmão,<sup>c</sup> Aluisio A. Cabral,<sup>a</sup> Samuel Filgueiras Rodrigues,<sup>a</sup> Antônio Ernandes Macedo Paiva,<sup>a</sup> Ana C. S Alcântara,<sup>b,\*</sup> Marco Aurélio Suller Garcia,<sup>b,\*</sup>Alex Rojas<sup>a,\*</sup>

<sup>a</sup>Instituto Federal de Educação Ciência e Tecnologia do Maranhão (IFMA), Programa de Pós-graduação em Engenharia de Materiais – PPGEM. Av. Getúlio Vargas, Monte Castelo, São Luis, MA, Brazil.

<sup>b</sup>Department of Chemistry, Federal University of Maranhao, Avenida dos Portugueses, 1966, 65080-805 São Luís (MA) Brazil.

<sup>c</sup>Instituto de Química, Universidade de Federal do Rio Grande do Sul (UFRGS), 91501-970. Porto Alegre, RS, Brazil

\* Corresponding author.

E-mail address: <u>alex1981rojas@hotmail.com</u> (Alex Rojas); <u>marco.suller@ufma.br</u> (Marco A. S. Garcia); <u>ana.alcantara@ufma.br</u> (A.C.S. Alcântara).



**Figure S1.** TG curves recorded under air-flow conditions for the A) MCM-41, B) ZIF-8, C) NH2-MCM-41, and D) ZIF-8@NH-MCM-41 samples.



Figure S2. TEM images of A) MCM-41, B) ZIF-8, and C) ZIF-8@NH-MCM-41.



**Figure S3**. SEM images of (a) MCM-41 , (b) NH2-MCM-41, (c) ZIF-8, (d) ZIF-8@NH-MCM-41 samples. Under 20 kx of magnification.



Figure S4. Plot of  $\log v$  against  $\log i$  for all the materials.



Figure S5. CV spectrum of the AC and ZIF-8@NH-MCM-41 material at 5 mV s<sup>-1</sup>.



Figure S6. Plot of  $\log v$  against  $\log i$  for the asymmetric supercapacitor cell.



Figure S7. A) EIS Nyquist diagram. *Inset* shows the equivalent circuit used for the fitting impedance spectra

| NH <sub>2</sub> -MCM41      |                                              |                               | MCM-41                      |                                              |                               | ZIF-8                                   |                                              | ZIF-8@NH-MCM-41               |                                         |                                              |                               |
|-----------------------------|----------------------------------------------|-------------------------------|-----------------------------|----------------------------------------------|-------------------------------|-----------------------------------------|----------------------------------------------|-------------------------------|-----------------------------------------|----------------------------------------------|-------------------------------|
| Current<br>Density<br>A g-1 | Specific<br>Capacitance<br>F g <sup>-1</sup> | Coulombic<br>Efficiency<br>n% | Current<br>Density<br>A g-1 | Specific<br>Capacitance<br>F g <sup>-1</sup> | Coulombic<br>Efficiency<br>n% | Current<br>Density<br>A g <sup>-1</sup> | Specific<br>Capacitance<br>F g <sup>-1</sup> | Coulombic<br>Efficiency<br>n% | Current<br>Density<br>A g <sup>-1</sup> | Specific<br>Capacitance<br>F g <sup>-1</sup> | Coulombic<br>Efficiency<br>n% |
| 1                           | 2251.21                                      | 66.88                         | 1                           | 2656.09                                      | 91.97                         | 1                                       | 1395.23                                      | 75.18                         | 1                                       | 3245.56                                      | 95.52                         |
| 2                           | 1878.04                                      | 74.90                         | 2                           | 2302.43                                      | 82.66                         | 2                                       | 1109.523                                     | 81.46                         | 2                                       | 2582.27                                      | 72.96                         |
| 4                           | 1717.07                                      | 84.21                         | 4                           | 2039.02                                      | 86.7                          | 4                                       | 1009.523                                     | 86.88                         | 4                                       | 2318.98                                      | 83.57                         |
| 6                           | 1639.02                                      | 89.6                          | 6                           | 1858.53                                      | 90.07                         | 6                                       | 928.571                                      | 89.04                         | 6                                       | 2156.96                                      | 87.11                         |
| 8                           | 1560.97                                      | 90.9                          | 8                           | 1736.58                                      | 92.7                          | 8                                       | 876.19                                       | 92                            | 8                                       | 2025.31                                      | 90.09                         |
| 10                          | 1512.19                                      | 92.5                          | 10                          | 1658.53                                      | 94.44                         | 10                                      | 833.333                                      | 94.59                         | 10                                      | 1898.73                                      | 89.28                         |
|                             |                                              |                               |                             |                                              |                               |                                         |                                              |                               |                                         |                                              |                               |

Table S1. Specific capacitance and coulombic efficiency at different current densities of MCM-41, NH<sub>2</sub>-MCM-41, ZIF-8, and ZIF-

8@NH-MCM-41.

| ZIF-8@N                     | H-MCM-41                                    | COH  AC                                      |                                        |                                          |
|-----------------------------|---------------------------------------------|----------------------------------------------|----------------------------------------|------------------------------------------|
| Current<br>Density<br>A g-1 | Specific<br>Capacity<br>mAh g <sup>-1</sup> | Specific<br>Capacitance<br>F g <sup>-1</sup> | Power<br>Density<br>W kg <sup>-1</sup> | Energy<br>Density<br>Wh kg <sup>-1</sup> |
| 1                           | 15.55                                       | 31.6                                         | 495                                    | 7.7                                      |
| 2                           | 12.22                                       | 24.8                                         | 998.1                                  | 6.1                                      |
| 4                           | 8.88                                        | 18                                           | 1980                                   | 4.4                                      |
| 6                           | 6.66                                        | 13.5                                         | 2970                                   | 3.3                                      |
| 8                           | 6.6                                         | 13.5                                         | 3960                                   | 3.3                                      |
| 10                          | 5.5                                         | 11.3                                         | 4860                                   | 2.7                                      |
|                             |                                             |                                              |                                        |                                          |

**Table S2.** Specific Capacity, SpecificEnergy density Asymmetric

\_\_\_\_ capacitance, Power Density and Supercapacitor Cell (ASCs).