Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supplementary Information

Ammonium ion intercalation and oxygen-rich vacancies in birnessite-type MnO₂ for supercapacitor and oxygen evolution applications

Juyin Liu, Xiaoze Ren, Yanfang Gao*, Ling Liu*, II

*School of Chemical Engineering, Inner Mongolia University of Technology, Hohhot

010051, P. R. China

Engineering Research Center of Large Energy Storage Technology

* E-mail addresses: yf_gao@imut.edu.cn

*, II E-mail addresses: *ll@imut.edu.cn*

Experimental Procedures

Chemicals and reagents

Potassium permanganate (KMnO₄) was purchased from Tianjin Damao Chemical Reagent Co., Ltd. Ammonium chloride (NH₄Cl) was purchased from Aladdin Reagent (Shanghai) Co., Ltd. Lithium sulphate (Li₂SO₄) was purchased from Aladdin Reagent (Shanghai) Co., Ltd. Nickel foam (NF) was purchased from Taiyuan Lizhiyuan Technology Co., Ltd. All reagents were directly used without further purification. All solutions were prepared using ultrapure water.

Fig. S1. SEM images of (a) 0.5 M-A-MnO₂. (b) 2 M-A-MnO₂.

Fig. S2. (a-b) Mn 2p spectra of 0.5 M-A-MnO₂ and 2 M-A-MnO₂. (c-d) Mn 3s spectra of 0.5 M-A-MnO₂ and 2 M-A-MnO₂ samples.

Fig. S3. (a-b) O 1s spectra of 0.5 M-A-MnO₂ and 2 M-A-MnO₂. (c) Ratio of lattice oxygen concentrations for four samples. (d) N 1s spectra of C-A-MnO₂.

Fig. S4. Local magnification of the C-A-MnO₂ impedance spectra.

Fig. S5. Impedance fitting results of the C-A-MnO₂.

Fig. S6. (a) CV and GCD curves of three samples: (a, b) δ -MnO₂. (c, d) 0.5 M-A-MnO₂. (e, f) 2 M-A-MnO₂.

Fig. S7. The linear fitting curves of log (i) vs log (v) according to the CV results in Fig. S6. (a).

Fig. S8. Pseudocapacitive fraction (shown by the shaded area) calculated at a scan rate of 10-80 mV s⁻¹ from CV curves at different scan rates of A-MnO₂ electrode.

Fig. S9. Pseudocapacitive fraction (shown by the shaded area) calculated at a scan rate of 10-80 mV s⁻¹ from CV curves at different scan rates of δ -MnO₂ electrode.

Fig. S10. Nyquist plots of A-MnO₂//La-MoO₃/GQD ASC device (inset: the Nyquist plots magnified at high frequencies).

Fig. S11. Long cyclic stability tests for 8,000 cycles of A-MnO₂//La-MoO₃/GQD.

Fig. S12. CV curves in the non-Faraday interval with different scan rates of δ -MnO₂.

Sample	Mn ³⁺ /Mn ⁴⁺	Mn-O-Mn	Mn-O-H	Н-О-Н
δ-MnO ₂	1.84	61.8%	23.2%	15.0%
0.5 M-A-MnO ₂	2.86	60.9%	25.9%	13.1%
1 M-A-MnO ₂	3.25	49.2%	31.1%	19.6%
2 M-A-MnO ₂	3.11	59.4%	29.5%	10.9%

Table S1. Ratio of Mn³⁺/Mn⁴⁺ and O species content (at. %) obtainedfrom XPS spectra of O 1s.

Samula	Surface Area	Pore Diameter	Pore Volume
Sample	$(m^2 g^{-1})$	(nm)	(cm ³ g ⁻¹)
δ-MnO ₂	91.043	3.824	0.481
0.5 M-A-MnO ₂	158.740	3.815	0.824
1 M-A-MnO ₂	372.344	3.814	1.786
2 M-A-MnO ₂	157.777	3.814	0.804

Table S2. Specific surface area and pore characteristics of the C-A-MnO₂.

Electrode	Specific capacitance (F g ⁻¹)	Electrolyte	Current density	Ref.
MnO ₂ -R	181.70	1 M Na ₂ SO ₄	0.5 A g ⁻¹	[1]
CuO/MnO ₂	228.00	1 M Na ₂ SO ₄	0.25 A g ⁻¹	[2]
MnO ₂ -b	212.68	0.5 M Na ₂ SO ₄	3 mA cm ⁻²	[3]
MnOx-CM	224.60	1 M Na ₂ SO ₄	0.2 A g ⁻¹	[4]
D-MnO ₂	202.00	1 M Na ₂ SO ₄	1 A g ⁻¹	[5]
MnO ₂ /La ₂ O ₃	245.40	1 M Na ₂ SO ₄	0.3 A g ⁻¹	[6]
C/MnO ₂	128.75	1 M Na ₂ SO ₄	0.5 A g ⁻¹	[7]
MnO ₂ -1H	222.50	1 M Na ₂ SO ₄	0.5 A g ⁻¹	[8]
1 M-A-MnO ₂	252.20	1 M Li ₂ SO ₄	0.5 A g ⁻¹	This work

Table S3. Comparison of electrochemical properties of A-MnO₂ samples.

Catalysts	Electrolyte	Tafel slope	η(mV)@j	Dof	
Catalysis		(mV dec ⁻¹)	(mA cm ⁻²)	Kel.	
Co ₃ O ₄ -MnO ₂ -CNT	0.1 M KOH	66	420@10	[9]	
α -MnO ₂ -NWN	1 M KOH	65.6	467@10	[10]	
α -MnO ₂	1 M KOH	87.7	490@10	[11]	
β-MnO ₂	1 M NaOH	90	550@10	[12]	
Ni-MnO ₂	0.1 M KOH	86	445@10	[13]	
Al-MnO ₂	1 M KOH	107.9	390@10	[14]	
Fe-MnO ₂	1 M KOH	158.1	449@10	[14]	
1 M-A-MnO ₂	1 M KOH	61	361@10	This work	

Table S4. Literature data on OER activity of MnO_2 -based electrocatalysts.

References

- D. Zhang, J. Dai, J. Zhang, Y. Zhang, H. Liu, Y. Xu, J. Wu, P. Li, ACS Omega 2024, 9, 18032-18045.
- [2] Z. Zhang, C. Ma, M. Huang, F. Li, S. Zhu, C. Hua, L. Yu, H. Zheng, X. Hu, Y. Zhang, *Journal of Materials Science: Materials in Electronics* 2015, 26, 4212-4220.
- [3] W. Yang, H. Eraky, C. Zhang, A. P. Hitchcock, I. Zhitomirsky, *Chemical Engineering Journal* **2024**, *483*, 149391.
- [4] L. Ding, Z. Li, L. Chen, Z. Qi, *Electrochimica Acta* 2023, 455, 142424.
- [5] Y.-P. Zhu, C. Xia, Y. Lei, N. Singh, U. Schwingenschlögl, H. N. Alshareef, Nano Energy 2019, 56, 357-364.
- [6] Y. Li, B. Guan, A. Maclennan, Y. Hu, D. Li, J. Zhao, Y. Wang, H. Zhang, *Electrochimica Acta* 2017, 241, 395-405.
- [7] P. Li, J. Wu, L. Tang, H. Liu, Y. Xu, D. Zhang, *Ionics* **2023**, *29*, 3629-3639.
- [8] K. O. Oyedotun, A. A. Mirghni, O. Fasakin, D. J. Tarimo, B. A. Mahmoud, N. Manyala, *Journal of Energy Storage* 2021, 36, 102419.
- [9] D. Ye, T. Wu, H. Cao, Y. Wang, B. Liu, S. Zhang, J. Kong, *RSC Advances* 2015, 5, 26710-26715.
- [10] Y. Chen, S. Yang, H. Liu, W. Zhang, R. Cao, *Chinese Journal of Catalysis* 2021, 42, 1724-1731.
- [11] Y. Meng, W. Song, H. Huang, Z. Ren, S.-Y. Chen, S. L. Suib, *Journal of the American Chemical Society* **2014**, *136*, 11452-11464.
- [12] M. Fekete, R. K. Hocking, S. L. Y. Chang, C. Italiano, A. F. Patti, F. Arena, L. Spiccia, *Energy & Environmental Science* 2013, 6, 2222-2232.
- [13] K. Bera, A. Karmakar, K. Karthick, S. S. Sankar, S. Kumaravel, R. Madhu, S. Kundu, *Inorganic Chemistry* 2021, 60, 19429-19439.
- [14] H. Sun, S. Chen, B. Zhang, J. Wang, J. Yao, D. Li, G. Yuan, *Dalton Transactions* 2023, 52, 17407-17415.