Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information for

Decoding the ICT-PET-ESIPT Liaison Mechanism in a Phthalimide-based Trivalent Transition

Metal Ions Specific Chromo-fluorogenic Probe

Sabbir Ahamed^a, Manas Mahato^a, Rajkumar Sahoo^b, Najmin Tohora^a, Tuhina Sultana^a, Arpita Maiti^a

and Sudhir Kumar Dasa*

^aDepartment of Chemistry, University of North Bengal, Darjeeling, West Bengal 734013, India

^bDepartment of Chemistry, Indian Institute of Technology, Kharagpur-721302, India

Corresponding author: (Dr. S. K. Das; E-mail: sudhirkumardas@nbu.ac.in)

Table of contents						
Sl. No.	Descriptions					
Fig. S1	¹ H NMR spectrum of our prepared probe DAID in DMSO- d_6 .					
Fig. S2	¹³ C-NMR spectra of our synthesized DAID .					
Fig. S3	High-resolution mass spectra of our synthesized DAID .					
Fig. S4	Normalization plot of UV-visible titration spectra of DAID and the parent moiety of 4-AP	5				
Fig. 85	UV-visible absorption titration spectra of DAID upon gradual addition of Cr^{3+} (0 - 7 equiv.) and Fe^{3+} (0 - 11 equiv.) in a 20% water-DMSO mixture	6				
Fig. S6	Change of absorbance values by adding Cr^{3+} and Fe^{3+} at wavelengths 354 nm and 430 nm in 20% (v/v) water-DMSO mixture.	6				
Fig. S7	 (a) Combine emission titration spectra of DAID with parent aldehyde moiety upon gradual addition of Al³⁺ ions. (b) Comparison of emission intensity between DAID and parent aldehyde moiety within the equimolar addition of Al³⁺ ion. 	6				

Fig. S8	Emission titration spectra of DAID upon gradual addition of Cr ³⁺	7				
	and Fe ³⁺ (0 equiv.9 equiv.) and (0 to 17 equiv.) in 20% water-					
	DMSO mixture.					
						
Fig. 89	(a) & (b) Metal selectivity bar diagram demonstration	1				
	concerning absorbance values and Fluorescence intensity					
	respectively.					
Fig. S10	0 Job's plot of DAID with the addition of Cr^{3+} and Fe^{3+} ions in					
	20% H ₂ O – DMSO mixture to determine stoichiometric relation,					
	respectively					
F' 011	D + U' + U + U + U + U + U + U + U + U +	0				
F1g. 511	Benesi-Hildebrand plot fitting in DAID-Cr ³⁺ and Fe ³⁺ complex	8				
	for the estimation of binding constant					
Fig. S12	Partial ¹ H – NMR titration spectra of DAID due to the addition					
	of Al ³⁺ ions. The inset figure indicates the shifting of ethyl					
	proton from 1.09 to 1.08 ppm.					
E'- 012	$\mathbf{H}_{\mathbf{r}}^{\mathbf{r}} = \mathbf{h}_{\mathbf{r}}^{\mathbf{r}} + \mathbf{h}_{\mathbf{r}}^{\mathbf{r}} = \mathbf{h}_{\mathbf{r}}^{\mathbf{r}} + \mathbf{h}_{\mathbf$	0				
Flg. 815	High-resolution mass spectra of $DAID - AI^{3}$ complex (m/z)					
	418.0827.					
Fig. S14	The linear response curve of emission intensity for determination	10				
	of detection limit for Cr ³⁺ and Fe ³⁺ in 20% water-DMSO mixture					
Fig. S15	(a) Fluorescence intensity of DAID and its stable complex	10				
	DAID -A1 ^{$3+$} in pH 5-12. (b) Comparison of emission intensity					
	between DAID parent aldehyde mojety and their Λ^{13+} complex					
	between DAID , parent aldenyde molety, and then Al complex					
	within pH 5-12					
Table S1	Comparison table of chemosensors introduced for the detection	10-12				
	of trivalent metal cations in the last few decades with our probe					
	DAID.					

1. Synthetic procedure of HBAI

For the synthesis of salicylimine-based Salen derivative, **HBAI** (Scheme 1), 4aminophthalimide is dissolved in 2 ml of methanol and then we added 1 equivalent of salicylaldehyde dropwise to the solution with a catalytic amount of acetic acid. The mixture is refluxed at 60 °C for six hours. Then, the solution is furnished to a golden yellow precipitation and allowed to cool at room temperature. Then the precipitation is filtered off and washed several times with hot methanol. Yield = 87 %.

Scheme 1. Synthetic route for the preparation of HBAI.

2. Materials and instruments

Phthalimide, other reagents, and every metal cationic perchloride salt were purchased from the commercial supplier and used without purification. All the solvents are used for the preparation and spectroscopic analysis purposes in HPCL grade. ¹H NMR and ¹H NMR titration experiments are carried out on a Bruker 400 MHz instrument with chemical shifts (δ) in ppm unit. The same system is also used for the ¹³C NMR spectra measured with a frequency of 100 MHz. High-resolution mass spectra (HRMS) have been carried out on an Agilent 6545XT Advance-Bio LC/Q-TOF spectrometer. UV-visible spectroscopic analyses are carried out in HITACHI U-2910. Photoluminescence experiments are carried out using HITACHI F-7100 fluorimeter with 10 nm excitation and emission slit, respectively, under room temperature. Emission and excitation wavelength at the time of the fluorescent experiment were controlled at 400nm and 420 nm, respectively.

3. Measurement of fluorescence quantum yield

For the estimation of fluorescence quantum yield, we have considered the 4-aminophthalimide

(4-AP) as a standard in DMSO (Φ =0.83). Using the equation $\Phi_s \left(\frac{F_x}{F_s}\right) \left(\frac{A_s}{A_x}\right) \left(\frac{\eta_x^2}{\eta_s^2}\right)$, where Φ stands for quantum yield, F is the integrated fluorescence intensity, A is the absorbance, η defines the refractive index of the solvent, subscript 's' represents the standard 4-AP, and x is the unknown one. We have calculated the quantum yield (Φ) of our sensor **DAID** and **DAID**-Al³⁺ complex as 0.0038 and 0.37, respectively.

3. Measurement of fluorescence lifetime decay profiles

The time-resolved fluorescence lifetime decay profiles are recorded by a picosecond timecorrelated single photon counting (TCSPC) system (LifeSpec II, Edinburgh Instruments, U.K.) with the help of 375 nm pulsed laser source having pulse width 68 ps. The emissions signals are collected at the corresponding emission maxima by using a photomultiplier tube (H10720-01, Hama matsu) at magic angle 54.7°. For the determination of instrument response function (IRF) a colloidal Ludox solution is used which is found to be 270 ps. After deconvoluting the IRF, each decay curve is fitted by using an exponential decay function utilizing the equation: $\tau(t) = \Sigma b_i e^{-t/\tau_i}$ having goodness of fit (χ^2) values near to unity. Here, in the equation α_i and τ_i are the experimentally obtained pre-exponential factors and its corresponding lifetimes. Experimentally

obtained pre-exponential factors are normalized by the equations $\alpha_i = \frac{b_i}{\Sigma b_i}$ to achieve actual preexponential factors which is multiplied by 100 to obtained percentage of molecules corresponding to each lifetime. The average fluorescence lifetime are estimated with help of equation: $\langle \tau \rangle =$ $\Sigma \alpha_i \tau_i$

 $\Sigma \alpha_i$. The photoluminescence decay behaviour of **HBAI** and **DAID** are found to be bi and triexponential in nature.

Fig. S2: ¹³C-NMR spectra of our synthesized DAID.

Fig. S4: Normalization plot of UV-visible titration spectra of **DAID** and the parent moiety of 4-AP.

Fig. S5: (a) & (b) UV-visible absorption titration spectra of DAID upon gradual addition of Cr^{3+} (0 - 7 equiv.) and Fe³⁺ (0 - 11 equiv.) in 20% water-DMSO mixture.

Fig S6: (a) & (b) Change of absorbance values with the addition of $(M^{3+} = Cr^{3+} \text{ and } Fe^{3+})$ at wavelengths 354 nm & 432 nm and 348 nm & 430 nm respectively in 20% (v/v) water-DMSO mixture.

Fig S7: (a) Combine emission titration spectra of DAID with parent aldehyde moiety upon gradual addition of Al^{3+} ions. (b) Comparison of emission intensity between DAID and parent aldehyde moiety within the equimolar addition of Al^{3+} ions.

Fig. S8: (a) & (b) Emission titration spectra of DAID upon gradual addition of Cr^{3+} and Fe^{3+} (0 equiv.) and (0 to 17 equiv.) in 20% water-DMSO mixture.

Fig. S9: (a) & **(b)** Metal selectivity bar diagram demonstration concerning absorbance values and Fluorescence intensity respectively.

Fig. S10: (a) & (b) Job's plot of DAID with the addition of Cr^{3+} and Fe^{3+} ions in 20% H₂O – DMSO mixture to determine stoichiometric relation, respectively.

Fig. S11: (a) & (b) Benesi-Hildebrand plot fitting in DAID- Cr^{3+} and Fe^{3+} complex for the estimation of binding constant.

Fig. S12: Partial ${}^{1}\text{H}$ – NMR titration spectra of **DAID** due to the addition of Al³⁺ ions. The inset figure indicates the shifting of ethyl proton from 1.09 to 1.08 ppm.

Fig. S13: High-resolution mass spectra of DAID – Al^{3+} complex (m/z) 418.0827.

Fig. S14: (a) & (b) The linear response curve of emission intensity for determination of detection limit for Cr^{3+} and Fe^{3+} in 20% water-DMSO mixture.

Fig. S15: (a) Fluorescence intensity of **DAID** and its stable complex **DAID**-Al³⁺ in pH 5-12. (b) Comparison of emission intensity between **DAID**, parent aldehyde moiety, and their Al³⁺ complex within pH 5-12

 Table S1: Comparison table of chemosensors that have been introduced to detect trivalent

 metal cations in the last few decades with our probe DAID.

Probe	Solvent	$\lambda_{ex} (\lambda_{em}) / nm$	LOD	K _a	Ref
					no.
1	Pure CH ₃ CN	437 (475)	0.5 μM (Cr ³⁺) 0.3 μM (Al ³⁺) 0.2 μM (Fe ³⁺)	$\begin{array}{c} 1.58 \times 10^4 \text{M}^{-1} (\text{Cr3+}); \\ 6.46 \times 10^9 \text{M}^{-2} (\text{Al}^{3+}); \\ 1.26 \times 10^5 \text{M}^{-1} (\text{Fe3+}); \\ 1.02 - 10^4 \text{M}^{-1} (\text{Fe}^{-2+}) \end{array}$	1
2	$CH_{3}CN-$ HEPES buffer solution (40/60, v/v, pH = 7.4)	342 (484)	25 μM (Cr ³⁺) 23 μM (Al ³⁺) 20 μM (Fe ³⁺)	1.08 ×10 ⁴ M ⁻¹ (Fe ³⁺); 8.77×10 ³ M ⁻¹ (Al ³⁺) 5.68 ×10 ³ M ⁻¹ (Cr ³⁺)	2
3	CH ₃ CN– HEPES buffer solution (1:1), pH = 7.4)	460 (675)	93 nM (Cr ³⁺) 32 nM (Al ³⁺) 90 nM (Fe ³⁺)	Not determined	3
4	H ₂ O:EtOH (8:2)	390 (563) 390 (527)	0.20 μM (Cr ³⁺) 0.50 μM (Al ³⁺)	5.50×10 ⁴ M ⁻¹ (Cr ³⁺); 2.00×10 ⁴ M ⁻¹ (Al ³⁺);	4
5	CH ₃ OH–H ₂ O (6 : 4), (v/v)	330 (582)	1.74 μM (Al ³⁺); 2.36 μM (Cr ³⁺); 2.90 μM (Fe ³⁺)	1.00×104 M ⁻¹ (Al ³⁺); 2.60×102 M ⁻¹ (Cr ³⁺) 1.20×102 M ⁻¹ (Fe ³⁺);	5
6	H2O: MeOH (1: 1) mixture.	510 (555)	0.31 μM (Cr ³⁺); 0.34 μM (Al ³⁺); 0.29 μM (Fe ³⁺)	6.00 ×10 ⁴ M ⁻¹ (Cr ³⁺) 6.70×10 ⁴ M ⁻¹ (Fe ³⁺); 8.20×10 ⁴ M ⁻¹ (Al ³⁺);	6
7	DMF/H ₂ O (v/v=1:1)	365 (501)	$\begin{array}{c} 0.\ 337\ \mu M\ (Cr^{3+})\\ 0.\ 358\times\ \mu M\ (Fe^{3+});\\ 0.4.89\ \mu M\ (Al^{3+}) \end{array}$	2.06×10 ⁶ M ⁻¹ (Cr ³⁺) 4.72×10 ⁶ M ⁻¹ (Fe ³⁺) 1.85×10 ⁷ M ⁻¹ (Al ³⁺)	7
8	Pure MeOH	360 (583)	0.63 μM (Cr ³⁺); 0.14 μM (Fe ³⁺); 0.22 μM (Al ³⁺)	0.87×10 ⁴ M ⁻¹ (Cr ³⁺) 1.14×10 ⁴ M ⁻¹ (Fe ³⁺) 4.48×10 ⁴ M ⁻¹ (Al ³⁺)	8
9	20% (v/v) water-DMSO mixture	400 (503)	18.5 nM (Al ³⁺) 25 nM (Fe ³⁺) 27 nM (Cr ³⁺)	4.30×10 ¹² M ⁻³ (Al ³⁺) 1.85×10 ¹¹ M ⁻³ (Fe ³⁺) 3.00×10 ¹² M ⁻³ (Cr ³⁺)	In this work

Reference

- A. Barba-Bon, A. M. Costero, S. Gil, M. Parra, J. Soto, R. Martínez-Máñez and F. Sancenón, A new selective fluorogenic probe for trivalent cations, *Chem. Commun.*, 2012, 48, 3000–3002.
- S. Goswami, K. Aich, A. K. Das, A. Manna and S. Das, A naphthalimide– quinoline based probe for selective, fluorescence ratiometric sensing of trivalent ions, *RSC Adv.*, 2013, 3, 2412–2416.
- 3 S. Goswami, K. Aich, S. Das, A. K. Das, D. Sarkar, S. Panja, T. K. Mondal and S. Mukhopadhyay, A red fluorescence ' off-on ' molecular switch for selective detection of Al³⁺, Fe³⁺ and Cr³⁺: experimental and theoretical studies along with living cell imaging, *Chem. Commun.*, 2013, **49**, 10739–10741.
- J. Wang, Y. Li, N. G. Patel, G. Zhang, D. Zhou, and Y. Pang, A single molecular probe for multi-analyte (Cr³⁺, Al^{3+,} and Fe³⁺) detection in aqueous medium and its biological application, *Chem. Commun.*, 2014, **50**, 12258–12261.
- 5 X. Chen, X. Y. Shen, E. Guan, Y. Liu, A. Qin, J. Z. Sun and B. Zhong Tang, A pyridinylfunctionalized tetraphenylethylene fluorogen for specific sensing of trivalent cations, *Chem. Commun.*, 2013, **49**, 1503–1505.
- R. Alam, R. Bhowmick, A. S. M. Islam, A. Katarkar, K. Chaudhuri and M. Ali, A rhodamine based fluorescent trivalent sensor (Fe³⁺, Al³⁺, Cr³⁺) with potential applications for live cell imaging and combinational logic circuits and memory devices, *New J. Chem.*, 2017, 41, 8359–8369.
- M. Zhang, L. Gong, C. Sun, W. Li, Z. Chang, and D. Qi, A new fluorescent-colorimetric chemosensor based on a Schiff base for detecting Cr³⁺, Cu²⁺, Fe³⁺ and Al³⁺ ions, *Spectrochim. Acta Part A Mol. Biomol. Spectrosc.*, 2019, **214**, 7–13.
- 8 X. Li Yue, C. Rui Li, and Z. Yin Yang, A novel colorimetric and fluorescent probe for trivalent cations based on rhodamine B derivative, *J. Photochem. Photobiol. A Chem.*,

2018, **351**, 1–7.