Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information

Convenient synthesis of spiro-pyrazolone-pyrrolidinones via *ipso*-cyclization of arylidene pyrazolones with 2-chloro-*N*-phenylacetamides

Kavyashree Kuppayya Gond and Mahagundappa Rachappa Maddani*

Table of Contents

Materials and methodology	S2
Experimental Procedures	S2
Crystal Data	S3
Analytical Data	S5
¹ H and ¹³ C NMR Spectra	S10

Material and Methods General Information

All reactions were carried out in oven-dried glassware and the compounds synthesized were fully characterized by spectroscopic data. The NMR spectra were recorded on JEOL - 400 spectrometers, (¹H-NMR 400 MHz, ¹³C-NMR 100 MHz) and were referenced to the residual peaks of CDCl₃ at 7.26 ppm (¹H-NMR) and CDCl₃ at 77.23 ppm (¹³C-NMR). Chemical shifts (δ) are expressed in ppm, and *J* values are given in Hz. Data are reported as follows: Chemical shift in ppm (δ), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet), coupling constant (Hz), and integration. The reactions were monitored by thin layer chromatography (TLC) using silica gel GF254. The melting points (m.p.) were determined on the digital melting point apparatus and are uncorrected. Micromass Q-TOF mass spectrometer was used to record high-resolution mass spectra 60-70 eV in ESI mode. Materials unless otherwise indicated, all reagents were obtained from commercial suppliers used without further purification.

All the Arylidene pyrazolone and 2-chloro-*N*-phenylacetamide was synthesized using the procedure given in the literature.^{1&2}

General Procedure for the preparation of spiro-pyrazolone-pyrrolidinones

To a solution of arylidene pyrazolone **1** (100 mg, 1 equiv., 0.381 mmol) in acetonitrile (3 mL), was added 2-chloro-*N*-phenylacetamide **2** (1 equiv., 0.342 mmol) and NaH (2.0 equiv. 0.684 mmol). The reaction mixture was stirred at room temperature for 15 minutes. The progress of the reaction was monitored by TLC. After the completion of the reaction, the mixture was quenched with water and the product was extracted with ethyl acetate. The combined organic layers were dried over sodium sulfate, concentrated under reduced pressure, and purified by column chromatography to afford the pure product **3** as a white solid.

References

- 1. R. Maity, C. Gharui, AK Sil, S.C. Pan, Org. Lett., 2017, 19, 3, 665.
- 2. S. C. Kim, B.M. Kwon, Synthesis, 1982, 9, 795.

Table 1: Crystal data and structure refinement of 3j.

Identification code	KG -384	
Empirical formula	$C_{25}H_{19}CI_2N_3O_2$	
CCDC Number	2361417	
Formula weight	464.33	
Temperature/K	293(2)	
Crystal system	monoclinic	
Space group	P21/c	
a/Å	13.15780(10)	
b/Å	7.97410(10)	
c/Å	20.9819(2)	
α/°	90	
β/°	91.0860(10)	
γ/°	90	
Volume/Å3	2201.06(4)	
Z	4	
pcalcg/cm3	1.401	
μ/mm 1	2.884	
F(000)	960.0	
Radiation	Cu Kα (λ =	
	1.54184)	
20 range for data collection/°	6.72 to 144.092	
Index ranges	-16 ≤ h ≤ 16,	
	-7 ≤ k ≤ 9,	
	-25 ≤ l ≤ 25	
Reflections collected	24013	
Independent reflections	4321 [Rint =	
	0.0306,	
Data/restraints/parameters	4321/0/290	
Goodness-of-fit on F2	1.068	
Final R indexes [I>=2σ (I)]	R1 = 0.0358,	

Sample preparation for crystal growth: Compound **3j** was dissolved in ethanol, while slow evaporation of solvent at room temperature needle-type crystals were grown.

Figure 1: ORTEP diagram of compound of 3j with 50% ellipsoid probability.

Analytical Data

(5R,6S)-6-(4-methoxyphenyl)-4-methyl-2-phenyl-7-oxa-2,3-diazaspiro[4.4]non-3-en-1-one (3a) :

White solid; m.p. 168 - 170 °C; Yield – 76% (110 mg); ¹H-NMR (400 MHz, CDCl₃); δ = 2.52 (s, 3H), 3.81 (s, 3H), 4.52 – 4.57 (m, 1H), 4.77 – 4.82 (m, 1H), 5.86 (s, 1H), 6.89 – 6.93 (m, 2H), 7.23 – 7.27 (m, 1H), 7.28 – 7.36 (m, 3H), 7.40 – 7.49 (m, 6H), 7.72 – 7.76 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃); δ = 12.63, 55.37, 59.83, 71.86, 100.18, 114.43, 121.48, 125.77, 126.43, 127.27, 127.42, 128.98, 129.48, 134.46, 143.89, 146.19, 150.88, 159.29, 166.33; HRMS (ESI): m/z calcd for C₂₆H₂₃N₃O₃ [M+1] 426.1809 found 426.1812.

(5*R*,6*S*)-4-methyl-2,7-diphenyl-6-(p-tolyl)-2,3,7-triazaspiro[4.4]non-3-ene-1,8-dione (3b) :

White solid; m.p. 198 - 200 °C; Yield – 71% (105 mg); ¹H-NMR (400 MHz, CDCl₃); δ = 1.82 (s, 3H), 2.24 (s, 3H), 2.86 – 2.92 (m, 1H), 3.10 – 3.16 (m, 1H), 5.65 (s, 1H), 6.91 – 7.03 (m, 4H), 7.11 – 7.25 (m, 2H), 7.27 – 7.44 (m, 6H), 7.81 – 7.85 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃); δ = 15.26, 21.10, 37.21, 58.45, 68.57, 119.00, 122.95, 125.59, 125.86, 125.98, 128.86, 128.95, 129.60, 130.90, 137.26, 137.55, 138.68, 159.53, 170.67, 173.01; HRMS (ESI): m/z calcd for C₂₆H₂₃N₃O₂ [M+1] 410.1845 found 410.1849.

(5R,6S)-4-methyl-2,6,7-triphenyl-2,3,7-triazaspiro[4.4]non-3-ene-1,8-dione (3c) :

White solid; m.p. 162 - 164 °C; Yield – 64% (96 mg); ¹H-NMR (400 MHz, CDCl₃); δ = 2.36 (s, 3H), 2.78 – 2.81 (m, 1H), 3.17 – 3.23 (m, 1H), 5.33 (s, 1H), 7.08 – 7.15 (m, 5H), 7.21 – 7.24 (m, 5H), 7.25 – 7.30 (m, 1H), 7.37 – 7.42 (m, 2H), 7.47 – 7.52 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃); δ = 13.89, 29.68, 57.35, 67.38, 118.91, 122.36, 125.33, 125.80, 127.02, 128.68, 128.74, 128.96, 129.13,

137.12, 137.17, 139.61, 170.71, 188.87; HRMS (ESI): m/z calcd for $C_{25}H_{21}N_3O_2$ [M+1] 396.0976 found 396.0977.

(5R,6S)-6-(2,5-dimethoxyphenyl)-4-methyl-2,7-diphenyl-2,3,7-triazaspiro[4.4]non-3-ene-1,8-dione (3d) :

White solid; m.p. 153 - 155 °C; Yield -65% (91 mg); ¹H-NMR (400 MHz, CDCl₃); $\delta = 1.59$ (s, 3H), 2.90 -2.96 (m, 1H), 3.04 -3.11 (m, 1H), 3.48 (s, 3H), 3.55 (s, 3H), 6.02 (s, 1H), 6.62 -6.64 (m, 1H), 6.66 - 6.74 (m, 2H), 7.11 -7.22 (m, 2H), 7.29 -7.35 (m, 2H), 7.38 -7.44 (m, 2H), 7.46 -7.50 (m, 2H), 7.92 -7.96 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃); $\delta = 14.84$, 37.83, 55.35, 55.61, 56.23, 110.99, 113.88, 114.03, 118.27, 122.60, 124.01, 125.00, 125.78, 128.92, 128.95, 137.57, 137.95, 151.08, 153.13, 159.49, 170.65, 174.65; HRMS (ESI): m/z calcd for C₂₇H₂₅N₃O₄ [M+1] 456.1918 found 456.1923.

0

Ph

O

(5R,6S)-6-(4-isopropylphenyl)-4-methyl-2,7-diphenyl-2,3,7-triazaspiro[4.4]non-3-ene-1,8-dione (3e):

White solid; m.p. 168 - 170 °C; Yield - 64% (92 mg); ¹H-NMR (400 MHz, CDCl₃); $\delta = 1.14 - 1.16$ (m, 6H), 1.71(s, 3H), 2.76 - 2.91 (m, 2H), 3.02 - 3.08 (m, 1H), 3.74 (s, 3H), 5.54 (s, 1H), 6.80 - 6.84 (m, 2H), 6.95 - 6.99 (m, 1H), 7.05 - 7.09 (m, 2H), 7.18 - 7.23 (m, 1H), 7.25 - 7.30 (m, 2H), 7.37 - 7.42 (m, 2H), 7.79 - 7.84 (m, 2H) ; ¹³C-NMR (100 MHz, CDCl₃); $\delta = 15.07$, 23.71, 33.65, 36.91, 55.37, 58.56, 68.90, 114.42, 119.03, 124.78, 125.55, 126.20, 126.97, 128.94, 130.20, 131.44, 137.52, 149.73, 157.47, 159.66, 170.79, 173.35; HRMS (ESI): m/z calcd for $C_{28}H_{27}N_3O_2$ [M+1] 438.1821 found 438.1822.

White solid; m.p. 213 - 215 °C; Yield – 67% (94 mg); ¹H-NMR (400 MHz, CDCl₃); δ = 2.25 (s, 3H), 4.52 – 4.58 (m, 1H), 4.77 – 4.82 (m, 1H), 5.07 (s, 2H), 5.85 (s, 1H), 6.96 – 7.00 (m, 2H), 7.23 – 7.49 (m, 15H), 7.72 – 7.76 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃); δ = 12.95, 29.39, 59.83, 70.13, 72.28, 76.68, 100.00, 105.98, 115.38, 121.50, 125.76, 127.27, 127.44, 128.11, 128.64, 128.98, 129.48, 134.73, 136.52, 138.17, 143.84, 146.24, 150.80, 158.49, 166.33; HRMS (ESI): m/z calcd for C₃₂H₂₇N₃O₃ [M+1] 502.0114 found 502.0116.

(5*R*,6*S*)-6-(4-fluorophenyl)-4-methyl-2,7-diphenyl-2,3,7-triazaspiro[4.4]non-3-ene-1,8-dione (3g) :

White solid; m.p. 183 - 185 °C; Yield – 56% (82 mg); ¹H-NMR (400 MHz, CDCl₃); δ = 2.19 (s, 3H), 4.48 – 4.53 (m, 1H), 4.63 –4.68 (m, 1H), 5.13 (s, 1H), 6.98 – 7.06 (m, 2H), 7.18 – 7.28 (m, 4H), 7.32 – 7.44 (m, 6H), 7.64 – 7.69 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃); δ = 17.42, 34.46, 64.46, 104.45, 120.78, 121.00, 126.30, 130.47, 131.33, 132.20, 132.70, 132.78, 133.79, 134.36, 148.53, 150.92, 170.91; HRMS (ESI): m/z calcd for C₂₅H₂₀FN₃O₂ [M+1] 414.1567 found 414.1569.

(5R,6S)-6-(4-bromophenyl)-4-methyl-2,7-diphenyl-2,3,7-triazaspiro[4.4]non-3-ene-1,8-dione (3h) :

White solid; m.p. 142 - 144 °C; Yield – 52% (72 mg); ¹H-NMR (400 MHz, CDCl₃); δ = 1.83 (s, 3H), 2.77 – 2.83 (m, 1H), 3.08 – 3.13 (m, 1H), 5.59 (s, 1H), 6.82 – 6.86 (m, 2H), 7.07 – 7.18 (m, 2H), 7.25 – 7.29 (m, 6H), 7.32 – 7.38 (m, 2H), 7.45 – 7.77 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃); δ = 15.39, 29.57, 37.20, 58.52, 68.15, 118.92, 122.89, 125.57, 125.79, 126.12, 127.73, 129.02, 131.61, 131.78, 132.12, 159.19, 161.39, 170.60, 172.60; HRMS (ESI): m/z calcd for C₂₅H₂₀BrN₃O₂ [M+1] 474.0776 found 474.0778.

(5*R*,6*S*)-6-(4-chlorophenyl)-4-methyl-2,7-diphenyl-2,3,7-triazaspiro[4.4]non-3-ene-1,8-dione (3i) :

White solid; m.p. 205 - 207 °C; Yield -51% (73 mg); ¹H-NMR (400 MHz, CDCl₃); $\delta = 2.34$ (s, 3H), 2.79 -2.82 (m, 1H), 3.14 -3.21 (m, 1H), 5.30 (s, 1H), 7.04 -7.15 (m, 4H), 7.20 -7.27 (m, 1H), 7.28 -7.37 (m, 7H), 7.50 -7.54 (m, 2H);

¹³C-NMR (100 MHz, CDCl₃); δ = 14.11, 29.72, 36.39, 57.17, 66.62, 118.89, 122.38, 125.50, 126.01, 128.45, 128.84, 128.98, 129.07, 131.90, 135.03, 136.99, 137.75, 159.30, 170.56, ; HRMS (ESI): m/z calcd for $C_{25}H_{20}CIN_3O_2$ [M+1] 430.1276 found 430.1278.

(5R,6R)-6-(2,5-dichlorophenyl)-4-methyl-2,7-diphenyl-2,3,7-triazaspiro[4.4]non-3-ene-1,8-dione (3j) :

White solid; m.p. 236 - 238 °C; Yield – 61% (85 mg); ¹H-NMR (400 MHz, CDCl₃); δ = 2.32 (s, 3H), 2.71 – 2.78 (m, 1H), 3.51 – 3.57 (m, 1H), 6.19 (s, 1H), 7.12 – 7.19 (m, 3H), 7.24 – 7.37 (m, 6H), 7.49 – 7.56 (m, 2H), 7.64 – 7.69 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃); δ = 13.37, 39.71, 54.83, 62.72, 119.03, 120.61, 125.42, 125.80, 128.53, 128.82, 129.02, 129.14, 130.29, 130.84, 135.04, 135.60, 137.07, 137.46, 160.67, 169.41, 170.96; HRMS (ESI): m/z calcd for C₂₅H₁₉Cl₂N₃O₂ [M+1] 464.0918 found 464.0920.

(5*R*,6*S*)-6-(4-methoxyphenyl)-4-methyl-2-phenyl-7-(p-tolyl)-2,3,7-triazaspiro[4.4]non-3-ene-1,8-dione (3m) : O

White solid; m.p. 198 - 200 °C; Yield – 68% (102 mg); ¹H-NMR (400 MHz, CDCl₃); δ = 1.85 (s, 3H), 2.27(s, 3H), 2.84 – 2.90 (m, 1H), 3.08 – 3.14 (m, 1H), 3.71 (s, 3H), 5.60 (s, 1H), 6.70 – 6.75 (m, 2H), 6.94 – 7.00 (m, 2H), 7.08 – 7.12 (m, 2H), 7.20 – 7.24 (m, 3H), 7.38 – 7.43 (m, 2H), 7.81 – 7.85(m, 2H); ¹³C-NMR (100 MHz, CDCl₃); δ = 12.61, 21.08, 29.68, 55.35, 59.90, 72.22, 99.95, 114.38, 121.45, 125.56, 126.39, 127.44, 128.97, 130.07, 134.48, 137.20, 138.07, 141.40, 150.88, 159.25, 166.36; HRMS (ESI): m/z calcd for C₂₇H₂₅N₃O₃ [M+1] 440.1921 found 440.1922.

(5*R*,6*S*)-6,7-bis(4-methoxyphenyl)-4-methyl-2-phenyl-2,3,7triazaspiro[4.4]non-3-ene-1,8-dione (3n) :

White solid; m.p. 176 - 178 °C; Yield – 71% (110 mg); ¹H-NMR (400 MHz, CDCl₃); δ = 2.23 (s, 3H), 3.80 – 3.84 (m, 6H), 4.52 – 4.87 (m, 1H), 4.76 – 4.81 (m, 1H), 5.79 (s, 1H), 6.90 – 6.99 (m, 4H), 7.23 – 7.26 (m, 1H), 7.26 – 7.35 (m, 4H), 7.40 – 7.46 (m, 2H), 7.72 – 7.76 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃); δ = 17.43, 60.16, 60.32, 64.92, 77.00, 104.80, 119.20, 119.46, 126.26, 131.20, 131.78, 132.25, 133.78, 139.23, 141.69, 142.89, 151.06, 155.68, 163.18, 164.07, 171.27; HRMS (ESI): m/z calcd for C₂₇H₂₅N₃O₄ [M+1] 455.1852 found 455.1856.

(5*R*,6*S*)-6-(4-bromophenyl)-7-(2,5-dimethylphenyl)-4-methyl-2-phenyl-2,3,7-triazaspiro[4.4]non-3-ene-1,8-dione (3o) :

White solid; m.p. 137 - 139 °C; Yield – 59% (86 mg); ¹H-NMR (400 MHz, CDCl₃); δ = 1.84 (s, 3H), 2.24(s, 3H), 2.27 (s, 2H), 2.84 – 2.90 (m, 1H), 3.08 – 3.15 (m, 1H), 5.62 (s, 1H), 6.91 – 6.95 (m, 2H), 6.98 – 7.02 (m, 2H), 7.08 – 7.12 (m, 2H), 7.20 – 7.25 (m, 2H), 7.38 – 7.44 (m, 2H), 7.80 – 7.85 (m, 2H) ; ¹³C-NMR (100 MHz, CDCl₃); δ = 15.25, 20.85, 29.66, 37.19, 58.73, 68064, 119.01, 122.92, 125.56, 126.04, 128.94, 129.48, 129.56, 130.90, 134.36, 134.46, 134.57, 135.72, 137.48,

138.69, 159.75, 170.72, 173.10; HRMS (ESI): m/z calcd for C₂₇H₂₄BrN₃O₂ [M+1] 503.1021 found 503.1022.

(5*R*,6*S*)-6-(2,5-dimethoxyphenyl)-7-(4-methoxyphenyl)-4-methyl-2-phenyl-2,3,7-triazaspiro[4.4]non-3-ene-1,8-dione (3p) :

White solid; m.p. 189- 191 °C; Yield – 68% (102 mg); ¹H-NMR (400 MHz, CDCl₃); δ = 2.81 – 2.87 (m, 1H), 2.94 – 3.01 (m, 1H), 3.41 (s, 3H), 3.53 (s, 3H), 3.69 (s, 3H), 5.87 (s, 1H), 6.60 – 6.68 (m, 2H), 6.77 – 6.80 (m, 2H), 7.00 – 7.20 (m, 1H), 7.31 – 7.37 (m, 5H), 7.85 – 7.89 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃); δ = 14.83, 29.67, 37.60, 55.34, 55.38, 55.64, 56.32, 110.96, 113.75, 114.24, 118.32, 124.11, 124.16, 124.41, 125.13, 128.93, 130.51, 137.83, 151.18, 153.23, 157.62, 159.65, 170.80, 174.75; HRMS (ESI): m/z calcd for C₂₇H₂₅N₃O₄ [M+1] 456.1918 found 456.1923.

(5*R*,6*S*)-6-(4-bromophenyl)-7-(4-methoxyphenyl)-4-methyl-2phenyl-2,3,7-triazaspiro[4.4]non-3-ene-1,8-dione (3q) :

White solid; m.p. 196 - 198 °C; Yield – 64% (110 mg); ¹H-NMR (400 MHz, CDCl₃); δ = 2.30 (s, 3H), 2.71 – 2.77 (m, 1H), 3.08 – 3.14 (m, 1H), 3.69 (s, 3H), 5.15 (s, 1H), 6.73 – 6.77 (m, 2H), 6.92 – 6.97 (m, 2H), 7.05 – 7.11 (m, 1H), 7.21 – 7.35 (m, 6H), 7.44 – 7.48 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃); δ = 14.07, 29.68, 36.36, 56.38, 67.03, 114.43, 118.91, 123.23, 124.25, 125.50, 128.88, 131.85, 132.49, 133.57, 134.59, 135.60, 137.08, 157.38, 159.54; HRMS (ESI): m/z calcd for C₂₆H₂₂BrN₃O₃ [M+1] 504.0356 found 504.0359.

(5*R*,6*S*)-7-(4-methoxyphenyl)-4-methyl-2-phenyl-6-(p-tolyl)-2,3,7-triazaspiro[4.4]non-3-ene-1,8-dione (3r) :

White solid; m.p. 133 - 135 °C; Yield – 78% (124 mg); ¹H-NMR (400 MHz, CDCl₃); δ = 2.22 (s, 3H), 2.83 – 2.89 (m, 1H), 3.04 – 3.09 (m, 1H), 3.71 (s, 3H), 5.55 (s, 1H), 6.80 – 6.82 (m, 2H), 6.90 – 7.01 (m, 4H), 7.16 – 7.27 (m, 3H), 7.35 – 7.41 (m, 2H), 7.80 – 7.84 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃); δ = 15.18, 21.05, 36.93, 55.29, 58.65, 68.80, 114.12, 118.93, 124.61, 125.49, 126.09, 128.89, 129.53, 130.02, 130.88, 137.42, 138.69, 157.40, 159.65, 170.74, 173.12; HRMS (ESI): m/z calcd for C₂₇H₂₅N₃O₃ [M+1] 440.1986 found 440.1989.

(5*R*,6*S*)-6-(4-isopropylphenyl)-7-(4-methoxyphenyl)-4-methyl-2-phenyl-2,3,7-triazaspiro[4.4]non-3-ene-1,8-dione (3s) :

White solid; m.p. 216 - 218 °C; Yield – 71% (109 mg); ¹H-NMR (400 MHz, CDCl₃); δ = 1.15 – 1.16 (m, 6H), 2.76 – 2.87 (m, 1H), 2.87 – 2.94 (m, 1H), 3.07 – 3.13 (m, 1H), 5.63 (s, 1H), 6.95 – 6.99 (m, 2H), 7.05 – 7.09 (m, 2H), 7.12 – 7.25 (m, 2H), 7.28 – 7.44 (m, 6H), 7.80 – 7.84 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃); δ = 15.11, 23.75, 29.68, 33.62, 37.22, 58.57, 68.62, 119.02, 123.00, 125.58,

125.87, 126.03, 126.99, 128.88, 128.95, 131.22, 131.86, 137.21, 137.46, 149.70, 170.75, 173.18 HRMS (ESI): m/z calcd for $C_{29}H_{29}N_3O_3$ [M+1] 468.2209 found 468.2212.

(5*R*,6*R*)-6-(2,5-dichlorophenyl)-7-(4-fluorophenyl)-4-methyl-2phenyl-2,3,7-triazaspiro[4.4]non-3-ene-1,8-dione (3t) :

White solid; m.p. 133 - 135 °C; Yield – 48% (70 mg); ¹H-NMR (400 MHz, CDCl₃); δ = 1.59 (s, 3H), 2.84 – 2.91 (m, 1H), 3.24 – 3.30 (m, 1H), .31 (s, 1H), 6.96 – 7.02 (m, 2H), 7.20 – 7.27 (m, 5H), 7.27 – 7.32 (m, 1H), 7.34 – 7.38 (m, 1H), 7.40 – 7.46 (m, 2H), 7.49 – 7.54 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃); δ = 13.34, 39.49, 54.68, 62.85, 115.88, 116.10, 119.02, 122.53, 122.61, 125.47, 128.60, 128.83, 130.44, 130.48, 135.07, 135.55, 137.38, 160.41, 161.30, 169.33, 170.89; HRMS (ESI): m/z calcd for C₂₅H₁₈Cl₂FN₃O₂ [M+1] 482.0833 found 482.0836.

(5*R*,6*S*)-7-(4-chlorophenyl)-6-(4-methoxyphenyl)-4-methyl-2-phenyl-2,3,7-triazaspiro[4.4]non-3-ene-1,8-dione (3u) :

White solid; m.p. 240 - 242 °C; Yield- 4 6 % (72 mg); ¹H-NMR (400 MHz, CDCl₃); δ = 1.81 (s, 3H), 2.85 – 2.91 (m, 1H), 3.07 – 3.13 (m, 1H), 3.72 (s, 3H), 5056 (s, 1H), 6.71 – 6.75 (m, 2H), 6.91 – 6.95(m, 2H), 7.18 – 7.24 (m, 2H), 7.25 – 7.32 (m, 4H), 7.37 – 7.43 (m, 2H), 7.79 – 7.84 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃); δ = 15.28, 29.68, 37.06, 55.20, 68.26, 114.44, 118.95, 124.31, 125.10, 125.64, 127.30, 128.97, 131.52, 131.92, 136.02, 137.52, 159.44, 159.88,

170.64, 172.90; HRMS (ESI): m/z calcd for $C_{26}H_{22}CIN_3O_3$ [M+1] 460.1463 found 460.1464.

(5R,6S)-7-(4-bromophenyl)-6-(4-methoxyphenyl)-4-methyl-2-phenyl-2,3,7-triazaspiro[4.4]non-3-ene-1,8-dione (3v) :

White solid; m.p. $163 - 165 \degree$ C; Yield -51% (87 mg); ¹H-NMR (400 MHz, CDCl₃); $\delta = 1.76$ (s, 3H), 2.79 - 2.85 (m, 1H), 3.01 - 3.08 (m, 1H), 3.66 (s, 1H), 6.85 - 6.89 (m, 2H), 7.12 - 7.18 (m, 5H), 7.31 - 7.37 (m, 4H), 7.74 - 7.78 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃); $\delta = 15.28$, 29.68, 37.06, 55.20, 68.26, 114.44, 118.95, 124.31, 125.10, 125.64, 127.30, 128.97, 131.52, 131.92, 136.02, 137.52, 159.44, 159.88, 170.64, 172.90; HRMS (ESI): m/z calcd for C₂₆H₂₂BrN₃O₃ [M+1] 504.1632 found 504.1635.

(5*R*,6*S*)-2-(4-fluorophenyl)-6-(4-methoxyphenyl)-4-methyl-7-phenyl-2,3,7-triazaspiro[4.4]non-3-ene-1,8-dione (3w):

White solid; m.p. 227 - 229 °C; Yield – 64% (91 mg); ¹H-NMR (400 MHz, CDCl₃); δ = 3.81 (s, 3H), 4.52 – 4.57 (m, 1H), 4.77 – 4.83 (m, 1H), 5.85 (s, 3H), 6.90 – 6.94 (m, 2H), 7.10 – 7.15 (m, 2H), 7.23 – 7.25 (m, 2H), 7.31 – 7.36 (m, 1H), 7.40 – 7.49 (m, 4H), 7.67 – 7.74 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃); δ = 17.34, 34.41, 60.10, 64.50, 77.00, 104.76, 119.16, 120.41, 120.64, 128.05, 130.46, 132.11, 134.23, 139.07, 148.55, 151.03, 155.43, 164.02, 164.41, 166.86, 170.95; HRMS (ESI): m/z calcd for C₂₆H₂₂FN₃O₃ [M+1] 444.1718 found 444.1720.

Fig. 2: ¹H-NMR spectrum of (5*R*,6*R*)-6-(4-methoxyphenyl)-4-methyl-2-phenyl-7-oxa-2,3diazaspiro[4.4]non-3-en-1-one (3a)

Fig. 5: ¹H-NMR spectrum of (5*R*,6*R*)-4-methyl-2,7-diphenyl-6-(p-tolyl)-2,3,7triazaspiro[4.4]non-3-ene-1,8-dione (3b)

30.0

Fig. 7: ¹³C-NMR spectrum of (5*R*,6*R*)-4-methyl-2,6,7-triphenyl-2,3,7-triazaspiro[4.4]non-3ene-1,8-dione (3c)

Fig. 8: ¹H-NMR spectrum of (5*R*,6*R*)-6-(2,5-dimethoxyphenyl)-4-methyl-2,7-diphenyl-2,3,7triazaspiro[4.4]non-3-ene-1,8-dione (3d)

180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0

Fig. 9: ¹³C-NMR spectrum of (5*R*,6*R*)-6-(2,5-dimethoxyphenyl)-4-methyl-2,7-diphenyl-2,3,7triazaspiro[4.4]non-3-ene-1,8-dione (3d)

80.0

70.0

60.0

50.0

180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0

0

10.0

30.0

40.0

20.0

¹H-NMR spectrum of (5*R*,6*R*)-6-(4-isopropylphenyl)-4-methyl-2,7-diphenyl-2,3,7triazaspiro[4.4]non-3-ene-1,8-dione (3e)

Fig. 11: ¹³C-NMR spectrum of (5*R*,6*R*)-6-(4-isopropylphenyl)-4-methyl-2,7-diphenyl-2,3,7triazaspiro[4.4]non-3-ene-1,8-dione (3e)

50.0 40.0 30.0 20.0 10.0 60.0

¹H-NMR spectrum of (5*R*,6*R*)-6-(4-(benzyloxy)phenyl)-4-methyl-2,7-diphenyl-2,3,7triazaspiro[4.4]non-3-ene-1,8-dione (3f)

Fig. 13: ¹H-NMR spectrum of (5*R*,6*R*)-6-(4-(benzyloxy)phenyl)-4-methyl-2,7-diphenyl-2,3,7triazaspiro[4.4]non-3-ene-1,8-dione (3f)

triazaspiro[4.4]non-3-ene-1,8-dione (3g)

Fig. 15: ¹³C-NMR spectrum of (5*R*,6*R*)-6-(4-fluorophenyl)-4-methyl-2,7-diphenyl-2,3,7triazaspiro[4.4]non-3-ene-1,8-dione (3g)

Fig. 16: ¹H-NMR spectrum of (5*R*,6*R*)-6-(4-bromophenyl)-4-methyl-2,7-diphenyl-2,3,7triazaspiro[4.4]non-3-ene-1,8-dione (3h)

Fig. 17: ¹³C-NMR spectrum of (5*R*,6*R*)-6-(4-bromophenyl)-4-methyl-2,7-diphenyl-2,3,7triazaspiro[4.4]non-3-ene-1,8-dione (3h)

triazaspiro[4.4]non-3-ene-1,8-dione (3i)

Fig. 19: ¹³C-NMR spectrum of (5*R*,6*R*)-6-(4-chlorophenyl)-4-methyl-2,7-diphenyl-2,3,7triazaspiro[4.4]non-3-ene-1,8-dione (3i)

Fig. 20: ¹H-NMR spectrum of (5*R*,6*S*)-6-(2,5-dichlorophenyl)-4-methyl-2,7-diphenyl-2,3,7triazaspiro[4.4]non-3-ene-1,8-dione (3j)

Fig. 21: ¹³C-NMR spectrum of (5*R*,6*S*)-6-(2,5-dichlorophenyl)-4-methyl-2,7-diphenyl-2,3,7triazaspiro[4.4]non-3-ene-1,8-dione (3j)

Fig. 22: ¹H-NMR spectrum of (5*R*,6*R*)-6-(4-methoxyphenyl)-4-methyl-2-phenyl-7-(p-tolyl)-2,3,7-triazaspiro[4.4]non-3-ene-1,8-dione (3m)

Fig. 23: ¹³C-NMR spectrum of (5*R*,6*R*)-6-(4-methoxyphenyl)-4-methyl-2-phenyl-7-(p-tolyl)-2,3,7-triazaspiro[4.4]non-3-ene-1,8-dione (3m)

Fig. 25: ¹³C-NMR spectrum of (5*R*,6*R*)-6,7-bis(4-methoxyphenyl)-4-methyl-2-phenyl-2,3,7triazaspiro[4.4]non-3-ene-1,8-dione (3n)

spectrum of (5*R*,6*R*)-6-(4-bromophenyl)-7-(2,5-dimethylphenyl)-4-methyl-2-phenyl-2,3,7triazaspiro[4.4]non-3-ene-1,8-dione (30)

Fig. 27: ¹³C-NMR spectrum of (5*R*,6*R*)-6-(4-bromophenyl)-7-(2,5-dimethylphenyl)-4methyl-2-phenyl-2,3,7-triazaspiro[4.4]non-3-ene-1,8-dione (3o)

(5*R*,6*R*)-6-(2,5-dimethoxyphenyl)-7-(4-methoxyphenyl)-4-methyl-2-phenyl-2,3,7triazaspiro[4.4]non-3-ene-1,8-dione (3p)

Fig. 29: ¹³C-NMR spectrum of (5*R*,6*R*)-6-(2,5-dimethoxyphenyl)-7-(4-methoxyphenyl)-4methyl-2-phenyl-2,3,7-triazaspiro[4.4]non-3-ene-1,8-dione (3p)

Fig. 30: ¹H-NMR spectrum of (5*R*,6*R*)-6-(4-bromophenyl)-7-(4-methoxyphenyl)-4-methyl-2phenyl-2,3,7-triazaspiro[4.4]non-3-ene-1,8-dione (3q)

Fig. 31: ¹³C-NMR spectrum of 5*R*,6*R*)-6-(4-bromophenyl)-7-(4-methoxyphenyl)-4-methyl-2phenyl-2,3,7-triazaspiro[4.4]non-3-ene-1,8-dione (3q)

2,3,7-triazaspiro[4.4]non-3-ene-1,8-dione (3r)

¹³C-

NMR

spectrum of (5*R*,6*R*)-7-(4-methoxyphenyl)-4-methyl-2-phenyl-6-(p-tolyl)-2,3,7triazaspiro[4.4]non-3-ene-1,8-dione (3r)

NMR spectrum of (5*R*,6*R*)-6-(4-isopropylphenyl)-7-(4-methoxyphenyl)-4-methyl-2-phenyl-2,3,7-triazaspiro[4.4]non-3-ene-1,8-dione (3s)

Fig. 35: ¹³C-NMR spectrum of (5*R*,6*R*)-6-(4-isopropylphenyl)-7-(4-methoxyphenyl)-4methyl-2-phenyl-2,3,7-triazaspiro[4.4]non-3-ene-1,8-dione (3s)

spectrum of (5*R*,6*S*)-6-(2,5-dichlorophenyl)-7-(4-fluorophenyl)-4-methyl-2-phenyl-2,3,7triazaspiro[4.4]non-3-ene-1,8-dione (3t)

Fig. 37: ¹³C-NMR spectrum of (5*R*,6*S*)-6-(2,5-dichlorophenyl)-7-(4-fluorophenyl)-4-methyl-2-phenyl-2,3,7-triazaspiro[4.4]non-3-ene-1,8-dione (3t)

Fig. 38: ¹H-NMR spectrum of (5*R*,6*R*)-7-(4-chlorophenyl)-6-(4-methoxyphenyl)-4-methyl-2phenyl-2,3,7-triazaspiro[4.4]non-3-ene-1,8-dione (3u)

Fig. 39: ¹³C-NMR spectrum of (5*R*,6*R*)-7-(4-chlorophenyl)-6-(4-methoxyphenyl)-4-methyl-2phenyl-2,3,7-triazaspiro[4.4]non-3-ene-1,8-dione (3u)

NMR spectrum of (5*R*,6*R*)-7-(4-bromophenyl)-6-(4-methoxyphenyl)-4-methyl-2-phenyl-2,3,7-triazaspiro[4.4]non-3-ene-1,8-dione (3v)

Fig. 41: ¹³C-NMR spectrum of (5*R*,6*R*)-7-(4-bromophenyl)-6-(4-methoxyphenyl)-4-methyl-2-phenyl-2,3,7-triazaspiro[4.4]non-3-ene-1,8-dione (3v)

spectrum of (5*R*,6*R*)-2-(4-fluorophenyl)-6-(4-methoxyphenyl)-4-methyl-7-phenyl-2,3,7triazaspiro[4.4]non-3-ene-1,8-dione (3w)

Fig. 43: ¹H-NMR spectrum of (5*R*,6*R*)-2-(4-fluorophenyl)-6-(4-methoxyphenyl)-4-methyl-7phenyl-2,3,7-triazaspiro[4.4]non-3-ene-1,8-dione (3w)