Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supplementary Information

Bimetallic Pd/Cu complexes of pyridylchalcogenolates and catalytic activity

in Sonogashira reaction

M. K. Pala, A. P. Wadawalea and S. Deya,b,*

^a Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India

^b Homi Bhabha National Institute, Training School Complex, Mumbai-400094, India

* E-mail: <u>dsandip@barc.gov.in</u> (S. Dey); Tel: +91-22-2559-2589

Materials and methods

All experiments were carried out under a nitrogen atmosphere by using standard Schlenk technique. Solvents used in the reactions were degassed with nitrogen and distilled using standard procedures. The 4,4'-dipyridyldisulfide (4,4-py₂S₂) was used as purchased from commercial sources without further purification. The ligand 4,4'-dipyridyldiselenide (4,4-py₂Se₂¹ and the complexes [PdCl(4-Sepy)]_n and [PdCl(PPh₃)₂(4-Sepy)] were prepared by literature methods.² Melting points were determined in capillary tubes and are uncorrected. Elemental analyses were carried out on a Thermo Fischer Flash EA1112 CHNS analyzer. ¹H NMR spectra were recorded on a Bruker NMR spectrometers operating at 300 MHz, chemical shifts are relative to internal chloroform- d_1 peak (δ 7.26). For ³¹P{¹H} NMR spectra were recorded on a maXis Impact (Bruker) mass spectrometer. Thermo gravimetric analyses (TGA) were carried out on a Nitzsch STA 409 PC-Luxx TG-DTA instrument, which was calibrated with CaC₂O₄.H₂O. The TG curves were recorded at a heating rate of 10 ⁰C min⁻¹ under a flow of argon. ESCA apparatus (SPECS GmbH) with an Al-K_q (1486.6 eV) X-ray Source was

deployed for XPS measurements. The binding energy was calibrated using Au- $4f_{7/2}$ line (83.95 eV) and corrected using C 1 s line (284.5 eV) from adventitious aliphatic carbon.

Synthesis of complexes:

[{PdCl(4-Spy)]_n

A methanolic solution (10 mL) of Na₂PdCl₄ (395 mg, 1.34 mmol) was added to a freshly prepared methanolic solution (15 mL) of Na(4-SC₅H₄N) (prepared from 4,4'-(C₅H₄N)₂S₂ (148 mg, 0.67 mmol) and NaBH₄ (51 mg, 1.35 mmol)) with stirring which continued for 6 h at room temperature afforded a dark brown precipitate. The brown precipitate was filtered through a G3 assembly and washed with water, acetone and diethyl ether and dried in vacuo (320 mg, 95%). M.p. >200 °C. Anal. Calcd for C₅H₄NPdCl: C, 23.83; H, 1.60; N, 5.56; Found: C, 23.94; H, 1.69; N, 5.31.

[{PdCl(PPh₃)₂(4-Spy)] (1a)

To dichloromethane suspension (20 mL) of [PdCl(4-Spy)]_n (188.8 mg, 0.085 mmol), solid PPh₃ (393.0 mg, 1.498 mmol) was added with stirring. The dark-red solution was stirred for 6 h at room temperature. The solvents were evaporated using vacuum, the brown residue was washed with diethyl ether, extracted with acetone (3×6 mL) and filtered. The filtrate was concentrated to 10 mL and kept in refrigerator to yield red crystals of the title complex (442.0 mg, 76 %), m.p. 156 °C. Anal. Calcd for C₄₁H₃₄ClNP₂PdS: C, 63.41; H, 4.41; N, 1.80; Found: C, 63.52; H, 4.29; N, 1.67%. ¹H NMR (CDCl₃): δ 7.66–7.60 (m, 14H, *o*-H, Ph and 2,6-H, py), 7.39–7.31 (m, 18H, *m/p*-H, Ph), 6.87 (br, 2H, 3,5-H, py); ³¹P{¹H} NMR (CDCl₃): δ 24.7 (s). Small amount of PPh₃ (δ –5.8) and OPPh₃ (δ 29.2) existed in solution.

[{Pd(PPh₃)₂(4-Spy)₂] (2a)

To methanolic solution (20 mL) of Na(4-SC₅H₄N) (prepared from 4,4'-(C₅H₄N)₂S₂ (72.6 mg, 0.33 mmol) and NaBH₄ (24.9 mg, 0.66 mmol)), solid Pd(PPh₃)₂Cl₂ (231.3 mg, 0.33 mmol) was

added with stirring. The orange coloured suspension was stirred for 3 h at room temperature. The whole reaction mixture was filtered through G-3 filtering assembly and the orange residue obtained was washed with hexane and diethyl ether (3 × 6 mL) to yield title complex (220.0 mg, 78 %), m.p. 182 °C. The product was recrystallized from methanol solvent to get red crystals. ¹H NMR (CDCl₃): δ 8.16 (d, 4.1Hz, 2H, py), 7.83 (d, 5.5 Hz, 2H, py), 7.67 (d, 5.5Hz, 2H, py), 7.60–7.53 (m, 26H, *o*-H, Ph and py), 7.38–7.19 (m, 38H, *m/p*-H, Ph and py), 6.97 (d, 5.4Hz, 2H, py), 6.83 (d, 5.7Hz, 2H, py), 6.75 (d, 5.5Hz, 2H, py); ³¹P{¹H} NMR (CDCl₃): δ 33.7 (s, dimeric complex), 25.1 (s, monomeric complex). Small amount of free PPh₃ (δ –5.4) existed in solution.

General experimental procedure for the catalysis reaction:

In an oven dried 25 ml Schlenk flask, a mixture of aryl halide (1 mmol), phenylacetylene (1.2 mmol), Pd catalyst (0.1 mol%), Base (2 mmol) in 3 ml DMA was heated in an oil bath at 120 °C for 15 h with continuous stirring. After 15 h the reaction mixture was cooled to room temperature and the product was extracted with ethyl acetate (3 x 5 ml). After drying over Na₂SO₄, the solvent was removed under vacuum, and the resulting crude product was purified by column chromatography on silica gel.

X-ray Crystallography

A Rigaku-Oxford make XtaLAB Synergy, Dualflex X-ray diffractometer was employed for crystal screening, unit cell determination, and data collection. The goniometer was controlled using the APEX3 software suite.³ The X-ray radiation employed was generated from a Cu X-ray tube K α ($\lambda = 1.54184$ Å). Integrated intensity information for each reflection was obtained by reduction of the data frames with the program APEX3.³ The integration method employed a three-dimensional profiling algorithm and all data were corrected for Lorentz and polarization

factors, as well as for crystal decay effects. Finally, the data was merged and scaled to produce a suitable data set. The absorption correction program SADABS⁴ was employed to correct the data for absorption effects. Systematic reflection conditions and statistical tests of the data suggested the space group *Cc*. A solution was obtained readily using XT/XS in APEX3.^{3,5} Hydrogen atoms were placed in idealized positions and were set riding on the respective parent atoms. All non-hydrogen atoms were refined with anisotropic thermal parameters. The structure was refined (weighted least squares refinement on F^2) to convergence.^{5,6} Olex2 was employed for the final data presentation and structure plots.⁶

References:

- 1. B. Boduszek and R. Gancarz, J. Prakt. Chem., 1996, 338, 186-189.
- K. V. Vivekananda, S. Dey, A. Wadawale, N. Bhuvanesh, V. K. Jain, *Dalton Trans.*, 2013, 42, 14158.
- APEX3 "Program for Data Collection on Area Detectors" BRUKER AXS Inc., 5465 East Cheryl Parkway, Madison, WI 53711–5373 USA.
- 4. G. M. Sheldrick, SADABS, "Program for Absorption Correction of Area Detector Frames", BRUKER AXS Inc., 5465 East Cheryl Parkway, Madison, WI 53711–5373 USA.
- (a) G. M. Sheldrick, *Acta Cryst.*, 2008, A64, 112–122. (b) G. M. Sheldrick, *Acta Cryst.*, 2015, A71, 3–8. (c) G. M. Sheldrick, *Acta Cryst.*, 2015, C71, 3–8. XT, XS, BRUKER AXS Inc., 5465 East Cheryl Parkway, Madison, WI 53711–5373 USA.
- O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, "OLEX2: A Complete Structure Solution, Refinement and Analysis Program", *J. Appl. Cryst.*, 2009, 42, 339–341.

Mass fragments of complex 3	Isotopic	Calculated peak	Experimental
	mass, m/z	of the most	peak of the most
		abundant ion	abundant ion
$([M + CH_3CN - (2Cl + PPh_3 + 2py)]^+, 56\%)$	1729.24	1731.26	1731.09
$([M + Na + CH_3CN - 9Ph)]^+, 98\%)$	1464.92	1468.95	1468.99
$([M + CH_3CN - (Cl + 9Ph)]^+, 81\%)$	1406.97	1408.99	1408.99
([M+H-(Cl+9Ph)] ⁺ , 100%)	1366.95	1368.97	1369.10
$([M + Na + 2CH_3CN - (CuCl(PPh_3)_2 + Cl + Cl)]$	1278.17	1280.18	1280.17
Spy + 2Ph)] ⁺ , 100%)			
$([M - (2Cl + 2PPh_3 + 3Ph)]^+, 74\%)$	1269.03	1271.04	1271.21

Table S1 Mass data for $[{Pd(PPh_3)_2(4-Spy)_2} {Cu(PPh_3)_2Cl}_2]$ (3).

Table S2 Mass data for $[{Pd(PPh_3)_2(4-Sepy)_2} {Cu(PPh_3)_2Cl}_2]$ (4).

Mass fragments of complex 4	Isotopic	Calculated peak	Experimental peak
	mass, m/z	of the most	of the most
		abundant ion	abundant ion
$([M - (PPh_3 + 4Ph)]^+, 59\%)$	1619.90	1621.93	1622.03
$([M + H - (CuCl(PPh_3)_2 + Ph)]^+, 37\%)$	1492.04	1492.06	1492.08
$([M + Na - (CuCl(PPh_3)_2 + 3Ph)]^+, 100\%)$	1359.94	1359.96	1359.94

Table S3: Op	ptimization	of reaction	parameters ^a .
--------------	-------------	-------------	---------------------------

H₃COC·		Br + H	A Base, Solvent, Time, Temperatu	→ H ₃ COC re		=-
Entry	Base	Catalyst	Solvent	Time (h)	Temp. (°C)	Yield (%)
Effect of	of Base:					
1 2 3 <i>Effect o</i>	Cs_2CO_3 Et ₃ N K ₂ CO ₃	4 4 4	DMSO DMSO DMSO	15 15 15	120 120 120	30 - 70
4 5 6 7 8 9	$\begin{array}{c} K_2CO_3\\ K_2CO_3\\ K_2CO_3\\ K_2CO_3\\ K_2CO_3\\ K_2CO_3\\ K_2CO_3\end{array}$	4 4 4 4 4	DMSO dioxane methanol 1,2-Dimethoxy ethane (DME) DMF Dimethyl acetamide (DMA)	15 15 15 15 15 15	120 reflux reflux reflux 120 120	70 - - 40 80
<i>Effect o</i> 10 11 12 13 14	<i>f time:</i> K ₂ CO ₃ K ₂ CO ₃ K ₂ CO ₃ K ₂ CO ₃ K ₂ CO ₃	4 4 4 4	DMA DMA DMA DMA DMA	3 6 10 12 15	120 120 120 120 120 120	19 38 57 69 80
15	K_2CO_3	4	DMA	20	120	80

^a Reaction conditions: 4-bromoacetophenone (1 mmol), phenyl acetylene (1.2 mmol), base (2 mmol), catalyst **4** (0.1 mol % of Pd).

Table S4. Comparison of the results reported for different Pd-based heterobimetallic catalysts in the Sonogashira coupling reaction.

	Bimetallic catalyst	
Ar - X + H - Ar'		Ar — — Ar'
	solvent, base, time, temp.	

Entry	Ar–X	Ar'	Catalyst	mol% of " Pd "	Reaction conditions	% yield	Refs.
1	PhBr	Ph	MnPdL3 complex $(L3 = pyridine-$	6	CH ₃ CN, DABCO, 90 °C, 24h	59	38
			hydrazone-pyrimidine- hydrazone-				
			phosphane scaffolds)				
2	PhBr	Ph	CoPdL3 complex	6	CH ₃ CN, DABCO, 90 °C, 4h	99	38
3		Ph	$[PdCuL_2](PF_6)_3$ (L = 3-(1,10-	0.01	DMF, pyrrolidine, 80 °C, 2h	86	39
			phenanthrolin-2-yl)-1-(pyridin-2-				
			ylmethyl)imidazolylidene)				
4	4-CH ₃ COC ₆ H ₄ Br	Ph	Pd ^{II} /Ir ^{III} complex based on naphthalene	1.0	DMF, KO'Bu, 100 °C, 4h	75 ^a	40
			and triazolylidene				
5	PhI	Ph	Pd ^{II} /Cu ^I -polymer complex based on	0.1	NMP, Bu ₃ N, 100 °C, 5h	88	41
			polyamic acid with biquinolyl group				
6	4-MeC ₆ H ₄ Br	Ph	PdCu NPs supported on MgO	0.02	DMF, DABCO, 80 °C, 24h	83	42
7	PhI	SiMe ₃	Pd-Cu/C	10	MeOH, Et ₂ NH, 120 °C, 20 min	70	43
8	PhI	Ph	Pd@HKUST-1@Cu ^{II} /CMC (CMC =	0.42	DMSO, K ₂ CO ₃ , 90 °C, 6h	96	44
			carboxymethylcellulose)				
9	PhI	Ph	Cu/Pd@Mod-PANI-3OH (PANI =	0.09	H ₂ O, Et ₃ N, 80 °C, 24h	92	45
			polyaniline)				
10	PhI	Ph	Pd/Cu@MCC-PAMAMG2.5-PEI	0.65	DMSO, K ₂ CO ₃ , 100 °C, 4h	96	46
			(PAMAM = polyamidoamine; MCC =				
			Microcrystalline cellulose)				
11	4-CH ₃ COC ₆ H ₄ Br	Ph	$[{Pd(PPh_3)_2(4-Sepy)_2} {Cu(PPh_3)_2Cl}_2]$	0.1	DMA, K ₂ CO ₃ , 120 °C, 15h	80	this work

^{*a*}PPh₃ as additive.

Table S5 Crystallographic and structure refinement data for [PdCl(PPh_3)2(4-Spy)] (1a) and[Pd(PPh_3)2(4-Spy)2].2CH3OH (2a).

Compounds	[PdCl(PPh ₃) ₂ (4-Spy)]	[Pd(PPh ₃) ₂ (4-Spy) ₂].2CH ₃ OH
Chemical Formula	C ₄₁ H ₃₄ ClNP ₂ PdS	$C_{48}H_{46}N_2O_2P_2PdS_2\\$
Formula weight	776.60	915.33
Crystal Size (mm ³)	0.50 x 0.50 x 0.50	0.100 x 0.040 x 0.020
T/K	298(2)	298(2)
λ/Å	CuKa ($\lambda = 1.54184$ Å)	CuKa ($\lambda = 1.54184$ Å)
Crystal system	Monoclinic	Monoclinic
Space group	C 2/c	P 21/c
a/Å	10.93610(10)	13.1283(2)
b/Å	16.70070(10)	19.3886(3)
c/Å	40.8473(4)	8.76560(10)
α/°	90	90
β/°	96.7350(10)	91.4320(10)
γ/ ^o	90	90
$V/Å^3$	7408.89(11)	2230.49(5)
$ ho_{calc}/g \ cm^{-3}$	1.407	1.363
Z	8	2
μ/mm^{-1}	6.285	5.219
Reflection collected/ unique	17675/ 7339	16240/ 4504
Data/restraints/parameters	7339/ 114/ 465	4504/ 0/ 261
Final R ₁ , wR ₂ indices	R1 = 0.0341, wR2 = 0.0928	R1 = 0.0353, wR2 = 0.0898
R_1 , wR_2 (all data)	R1 = 0.0631, wR2 = 0.1107	R1 = 0.0572, wR2 = 0.1109
Largest diff. peak & hole [eÅ-3]	1.164 and -1.929	0.912 and -1.148

Table S6 Crystallographic and structure refinement data for $[{Pd(PPh_3)_2(4-Spy)_2} {Cu(PPh_3)_2Cl}_2]$ (3) and $[{Pd(PPh_3)_2(4-Sepy)_2} {Cu(PPh_3)_2Cl}_2]$ (4)

Compounds	3	4
Chemical Formula	$C_{118}H_{98}Cl_{2}Cu_{2}N_{2}P_{6}PdS_{2}$	$C_{118}H_{98}Cl_2Cu_2N_2P_6PdSe_2$
Formula weight	2098.30	2192.10
Crystal Size (mm ³)	0.25 x 0.15 x 0.05	0.25 x 0.20 x 0.05
T/K	298(2)	298(2)
λ/Å	CuKa ($\lambda = 1.54184 \text{ Å}$)	$CuK\alpha (\lambda = 1.54184 \text{ Å})$
Crystal system	Triclinic	Triclinic
Space group	P -1	P -1
a/Å	11.68270(10)	12.3318(4)
b/Å	14.22020(10)	12.7988(5)
c/Å	16.74980(10)	19.1873(7)
α/ ^o	69.4180(10)	81.853(3)
β/°	78.0530(10)	77.968(3)
$\gamma/^{o}$	83.5570(10)	67.800(4)
$V/Å^3$	2546.24(4)	2735.65(19)
$\rho_{calc}/g \ cm^{-3}$	1.368	1.331
Z	1	1
μ/mm^{-1}	4.040	4.164
Reflection collected/ unique	24515/ 10386	24515/ 11074
Data/restraints/parameters	10386/ 0/ 602	11074/81/629
Final R ₁ , wR ₂ indices	R1 = 0.0420, wR2 = 0.1063	R1 = 0.0467, wR2 = 0.1363
R_1 , wR_2 (all data)	R1 = 0.0436, wR2 = 0.1075	R1 = 0.0531, wR2 = 0.1424
Largest diff. peak & hole [eÅ-3]	1.673 and -0.962	0.944 and -0.792

Scheme S1 Equilibria between monomeric complex 1 [PdCl(PPh₃)₂(4-Epy)] and trimeric complex [PdCl(PPh₃)(4-Sepy)]₃ (I).

Scheme S2 Equilibria between monomeric complex 2 $[Pd(PPh_3)_2(4-Epy)_2]$ and dimeric complex $[Pd(PPh_3)(\mu-4-Epy)(4-Epy)]_2$ (II).

$$2 [PdCl(PPh_{3})_{2}(4-Epy)] \xrightarrow{2 [CuCl(PPh_{3})_{3}]} \xrightarrow{[{Pd(PPh_{3})_{2}(4-Epy)_{2}}(Cu(PPh_{3})_{2}Cl]_{2}]} (3 and 4) + [PdCl_{2}(PPh_{3})_{2}] + 2 PPh_{3}$$

Scheme S3. Preparation of 3 and 4 [$\{Pd(PPh_3)_2(4-Sepy)_2\}$ { $Cu(PPh_3)_2Cl$ }] via route i.

Fig. S3 1 H NMR (300 MHz, CDCl₃) of [PdCl(PPh₃)₂(4-Sepy)] (1b).

Fig. S5 ¹H NMR (300 MHz, CDCl₃) of $[{Pd(PPh_3)_2(4-Spy)_2} {Cu(PPh_3)_2Cl}_2]$ (3) prepared from route (i).

Fig. S6 ${}^{31}P{}^{1}H$ NMR (121.5 MHz, CDCl₃) of [{Pd(PPh_3)_2(4-Spy)_2}{Cu(PPh_3)_2Cl}_2] (3) prepared from route (i).

Fig. S7 ¹H NMR (300 MHz, CDCl₃) of $[{Pd(PPh_3)_2(4-Spy)_2} {Cu(PPh_3)_2Cl}_2]$ (3) prepared from route (ii).

Fig. S8 ${}^{31}P{}^{1}H$ NMR (121.5 MHz, CDCl₃) of $[{Pd(PPh_3)_2(4-Spy)_2} {Cu(PPh_3)_2Cl}_2]$ (3) prepared from route (ii).

Fig. S9 ${}^{31}P{}^{1}H$ NMR (121.5 MHz, CDCl₃) of $[{Pd(PPh_3)_2(4-Spy)_2} {Cu(PPh_3)_2Cl}_2]$ (3) prepared from route (ii) after 1 day.

Fig. S10 ³¹P{¹H} NMR (121.5 MHz, CDCl₃) of [Pd(PPh₃)₂(4-Spy)₂] (2a).

Fig. S12 ¹H NMR (300 MHz, Acetone-d₆) of [Pd(PPh₃)₂(4-Sepy)₂] (2b).

Fig. S13 ${}^{31}P{}^{1}H$ NMR (121.5 MHz, Acetone-d₆) of [Pd(PPh₃)₂(4-Sepy)₂] (2b).

Fig. S14 ¹H NMR (300 MHz, CDCl₃) of [$\{Pd(PPh_3)_2(4-Sepy)_2\} \{Cu(PPh_3)_2Cl\}_2$] (4) prepared from route (i).

Fig. S15 ${}^{31}P{}^{1}H$ NMR (121.5 MHz, CDCl₃) of [{Pd(PPh₃)₂(4-Sepy)₂} {Cu(PPh₃)₂Cl}₂] (4) prepared from route (i).

Fig. S16 ¹H NMR (300 MHz, CDCl₃) of [$\{Pd(PPh_3)_2(4-Sepy)_2\} \{Cu(PPh_3)_2Cl\}_2$] (4) prepared from route (ii).

Fig. S17 ${}^{31}P{}^{1}H$ NMR (121.5 MHz, CDCl₃) of [{Pd(PPh_3)_2(4-Sepy)_2}{Cu(PPh_3)_2Cl}_2] (4) prepared from route (ii).

Fig. S18 ${}^{31}P{}^{1}H$ NMR (121.5 MHz, CDCl₃) of $[{Pd(PPh_3)_2(4-Sepy)_2} {Cu(PPh_3)_2Cl}_2]$ (4) prepared from route (ii) after 1 day.

Fig. S19 Thermogravimetric curve of $[{Pd(PPh_3)_2(4-Sepy)_2} {Cu(PPh_3)_2Cl}_2]$ (4).

Fig. S21 ${}^{31}P{}^{1}H$ NMR (300 MHz, CDCl₃) of [Cu(PPh₃)₃Cl] + PPh₃ in (1:1 stoichiometry) immediately.

Fig. S22 ${}^{31}P{}^{1}H$ NMR (300 MHz, CDCl₃) of [Cu(PPh₃)₃Cl] + PPh₃ in (1:1 stoichiometry) after 1day.

Fig. S23 ¹H NMR (300 MHz, CDCl₃) of $[{Pd(PPh_3)_2(4-Spy)_2} {Cu(PPh_3)_2Cl}_2]$ (3) prepared from route (i) after overnight.

Fig. S24 ${}^{31}P{}^{1}H$ NMR (121.5 MHz, CDCl₃) of $[{Pd(PPh_3)_2(4-Spy)_2} {Cu(PPh_3)_2Cl}_2]$ (3) prepared from route (i) after overnight.

Fig. S25 ³¹P{¹H} NMR (121.5 MHz, CDCl₃) of [{ $Pd(PPh_3)_2(4-Spy)_2$ } { $Cu(PPh_3)_2Cl$ }] (3) prepared from route (i) + PPh₃ in (1:2 stoichiometry) immediately.

Fig. S26 ³¹P{¹H} NMR (121.5 MHz, CDCl₃) of [{Pd(PPh₃)₂(4-Spy)₂} {Cu(PPh₃)₂Cl}₂] (3) prepared from route (i) + PPh₃ in (1:2 stoichiometry) after 2 days.

Fig. S27 ESI-mass spectrum of $[{Pd(PPh_3)_2(4-Spy)_2} {Cu(PPh_3)_2Cl}_2]$ (3). The insets show the experimentally obtained (below) isotope patterns of the fragments with those simulated (above) on the basis of natural isotope abundances. The found and calcd values are for the most abundant peak of ion.

Fig. S28 ESI-mass spectrum of $[{Pd(PPh_3)_2(4-Sepy)_2} {Cu(PPh_3)_2Cl}_2]$ (4). The insets show the experimentally obtained (below) isotope patterns of the fragments with those simulated (above) on the basis of natural isotope abundances. The found and calcd values are for the most abundant peak of ion.

Fig. S29 ORTEP diagram of $[PdCl(4-Spy)(PPh_3)_2]$ (1a) ellipsoids drawn at 50% probability. The hydrogen atoms are omitted for clarity.

Fig. S30 Kinetic study of catalysis reaction using catalysts $[{Pd(PPh_3)_2(4-Sepy)_2} {Cu(PPh_3)_2Cl}_2]$ (4) and mixture of 1b with $[CuCl(PPh_3)_3]$.

Fig. S31 Powder XRD pattern of (A) $[{Pd(PPh_3)_2(4-Sepy)_2} {Cu(PPh_3)_2Cl}_2]$ (4) before catalysis experiment and (B) black residue obtained after catalysis experiment.

Fig. S32 Energy Dispersive X-ray Analysis (EDAX) spectrum of the black residue obtained after catalysis experiment of [{Pd(PPh₃)₂(4-Sepy)₂} {Cu(PPh₃)₂Cl}₂] (4).

Fig. S33 XPS spectrum of the black residue obtained after catalysis experiment of **4** displaying only the Cu 2p doublet.

4-(phenylethynyl)acetophenone: ¹H NMR (300 MHz, CDCl₃) δ ppm: 2.62 (s, 3H, COCH₃), 7.38 (br, 3H), 7.56 (br, 2H), 7.61 (d, 7.8 Hz, 2H), 7.94 (d, 7.5 Hz, 2H). ¹³C {¹H} NMR (75 MHz, CDCl₃) δ ppm: 26.6(CH₃), 88.6, 92.7, 122.7, 128.2, 128.3, 128.4, 128.8, 131.6, 131.7, 136.2, 197.3(C=O).

Fig. S34 ¹H NMR (300 MHz, CDCl₃) of 4-(phenylethynyl)acetophenone.

Fig. S35 ¹³C{¹H} NMR (75 MHz, CDCl₃) of 4-(phenylethynyl)acetophenone.

4-(phenylethynyl)benzaldehyde: ¹H NMR (300 MHz, CDCl₃) δ ppm: 7.38-7.39 (m. 3H), 7.56-7.57 (m, 2H), 7.67 (d, 7.8 Hz, 2H), 7.87 (d, 8.1 Hz, 2H), 10.02 (s, 1H, CHO). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ ppm: 88.5, 93.4, 122.5, 128.5, 128.9, 129.6, 131.8, 132.1, 135.4, 191.4(C=O).

Fig. S36 ¹H NMR (300 MHz, CDCl₃) of 4-(phenylethynyl)benzaldehyde.

Fig. S37 ¹³C{¹H} NMR (75 MHz, CDCl₃) of 4-(phenylethynyl)benzaldehyde.

4-(phenylethynyl)benzoate: ¹H NMR (300 MHz, CDCl₃) δ ppm: 3.91 (s, 3H, OCH₃), 7.34 (br, 3H), 7.53 (br d, 2H), 7.58 (d, 8.4 Hz, 2H), 7.90 (d, 8.1 Hz, 2H).

Fig. S38 ¹H NMR (300 MHz, CDCl₃) of Methyl 4-(phenylethynyl)benzoate.

4-(phenylethynyl)anisole: ¹H NMR (300 MHz, CDCl₃) δ ppm: 3.78 (s, 3H, OCH₃), 6.78 (d, 9.0 Hz, 2H), 7.34-7.40 (m, 5H), 7.54 (d, 7.5 Hz, 2H).

Fig. S39 ¹H NMR (300 MHz, CDCl₃) of 4-(phenylethynyl)anisole.

1-(phenylethynyl)-4-nitrobenzene: ¹H NMR (300 MHz, CDCl₃) δ ppm: 7.41 (br, 3H), 7.56-7.57 (br m, 2H), 7.67 (d, 8.7 Hz, 2H), 7.22 (d, 8.4 Hz, 2H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ ppm: 87.5, 94.7, 122.1, 123.6, 125.0, 128.5, 129.3 130.3, 131.8, 132.2, 147.0.

Fig. S40 ¹H NMR (300 MHz, CDCl₃) of 1-(phenylethynyl)-4-nitrobenzene.

Fig. S41 ¹³C{¹H} NMR (75 MHz, CDCl₃) of 1-(phenylethynyl)-4-nitrobenzene.

2-(2-phenylethynyl)pyridine: ¹H NMR (300 MHz, CDCl₃) δ ppm: 7.22-7.61 (m, 1H), 7.36-7.38 (m, 3H), 7.53 (d, 7.8 Hz, 1H), 7.59-7.62 (m, 2H), 7.65-7.70 (m, 1H), 8.62 (d, 3.3 Hz, 1H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ ppm: 88.6, 89.2. 122.3, 122.7, 127.1, 128.4, 128.9, 129.2, 132.0, 132.5, 136.1, 143.5, 150.0

Fig. S42 ¹H NMR (300 MHz, CDCl₃) of 2-(2-phenylethynyl)pyridine.

Fig. S43 ¹³C{¹H} NMR (75 MHz, CDCl₃) of 2-(2-phenylethynyl)pyridine.

2-(phenylethynyl)thiophene: ¹H NMR (300 MHz, CDCl₃) δ ppm: 7.01-7.04 (m, 1H), 7.29 (d, 4.5 Hz, 2H), 7.35-7.36 (br m, 3H), 7.52-7.54 (m, 2H). ¹³C {¹H} NMR (75 MHz, CDCl₃) δ ppm: 82.6, 93.0. 123.0, 123.4, 127.1, 127.2, 128.3, 128.4, 129.2, 131.4, 131.9, 132.5

Fig. S44 ¹H NMR (300 MHz, CDCl₃) of 2-(phenylethynyl)thiophene.

Fig. S45 ¹³C{¹H} NMR (75 MHz, CDCl₃) of 2-(phenylethynyl)thiophene.

4-(phenylethynyl)benzonitrile: ¹H NMR (300 MHz, CDCl₃) δ ppm: 7.38-7.39 (br m. 3H), 7.54-7.56 (m, 2H), 7.62-7.65 (m, 4H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ ppm: 87.7, 93.8, 111.5, 118.5, 122.2, 128.2, 128.5, 129.1, 131.8, 132.1.

Fig. S46 ¹H NMR (300 MHz, CDCl₃) of 4-(phenylethynyl)benzonitrile.

Fig. S47 ¹³C{¹H} NMR (75 MHz, CDCl₃) of 4-(phenylethynyl)benzonitrile.