Iodide ion Enabled High Regioselective α -C(sp³)–H Triazolization of Ethers with *N*-Sulfonyl-1,2,3-triazoles

Yaqi Deng, ‡ Jiabin Yin, ‡ Zongjing Hu, Jian Xue, Jian Ji, Tong Zhu, Shunying Liu*

Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China

E-mail: syliu@sist.ecnu.edu.cn

Shunying Liu ORCID: 0000-0002-3894-757X

Table of Contents

1. General experimental details	S2
2. General procedure	S3-S6
3. Attempts for other ethers with <i>N</i> -sulfonyl-1,2,3-triazoles	
4. Single crystal X-ray structures of 3g	
5. Preliminary mechanistic studies	S10-S15
6. DFT calculation	S16-S31
7. ¹ H, ¹⁹ F and ¹³ C NMR data of compounds	S32-S37
8. ¹ H, ¹⁹ F and ¹³ C NMR Spectra	S38-S71
9.References	

1.General Experimental Details

All reactions and manipulations were carried out under an air atmosphere. All commercial anhydrous solvents and materials were commercialized. All ¹H NMR, ¹⁹F NMR and ¹³C NMR spectra were recorded using a Brucker 400 MHz spectrometer in CDCl₃. Tetramethylsilane (TMS) served as an internal standard ($\delta = 0$) for ¹H NMR, and CDCl₃ was used as internal standard ($\delta = 77.0$) for ¹³C NMR. Chemical shifts are reported in parts per million as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad). Column chromatography was performed on silica gel (300-400 mesh). High-resolution mass spectrometry (HRMS) was performed on IonSpec FT-ICR or Waters Micromass Q-TOF micro Synapt High-Definition Mass Spectrometer. The X-ray diffraction analysis was performed using a Bruker Smart-1000 X-ray diffractometer.

2. General Procedure

2.1 General procedure A: the preparation of Sulfonyl-1,2,3-triazoles¹

$$Me - \overset{O}{\overset{}_{\text{S}}}_{\overset{}_{\text{CI}}} + NaN_3 \xrightarrow{\text{acetone/H}_2O} Me - \overset{O}{\overset{}_{\text{S}}}_{\overset{}_{\text{CI}}} - N_3 \xrightarrow{R^1 \longrightarrow} N^{=N} N^{=N$$

Sulfonyl chloride (20 mmol) was dissolved in 50 mL of acetone, then sodium azide (1.95g, 30 mmol) dissolved in water was slowly added dropwise at 0°C. The reaction was stirred at 0°C for 1 h and then stirred at room temperature for 2 h. After the reaction was complete, the solution was concentrated. Upon complete consumption of the starting materials, the reaction mixture was quenched with saturated aqueous solution of NH₄Cl (20 mL), extracted with EA (3×30 mL), washed by brine. The combined extracts were dried with Na₂SO₄ and concentrated and used directly in the next reaction step.

The substituted acetylene (10 mmol) was dissolved in 50 mL of toluene, then CuTc (Copper(I) thiophene-2-carboxylate) (19mg, 0.1 mmol) was added and stirred for 5 minutes. The sulfonyl azide (9 mmol) was added slowly dropwise at 0°C and the mixture stirred overnight. After the reaction is complete, the residue was purified by

flash column chromatography using a mixture of petroleum ether and ethyl acetate (10:1~4:1) as eluent to give the desired products. *Attention!* Sulfonyl azides are potentially explosive materials and must be handled with caution!

2.2 Optimization of amination of C(sp³)-H reaction conditions

Table S1. Optimization of amination of C(sp³)-H reaction conditions

	N=N, N-Ms	+	oxidant			N=N,
Į		solvent,	Temp	Ň	+	NH NH
	1a	2a		3a		1a'
entry	additive (equiv.)	oxidant (equiv.)	solvent	T/°C	yield of $3a^{b}$	byproduct
1	$Cu(OAc)_2^{a}$	TBHP (4)	1,4-dioxiane	50	trace	1a' (100%)
2	Cu(OAc) ₂ ^b	TBHP (4)	1,4-dioxiane	50	trace	1a' (100%)
3	CuI ^c	TBHP (4)	1,4-dioxiane	50	trace	1a' (100%)
4	CuCl (2)	TBHP (4)	1,4-dioxiane	50	trace	1a' (100%)
5	$\operatorname{FeCl}_3(2)$	TBHP (4)	1,4-dioxiane	50	trace	1a' (100%)
6	KI (2)	TBHP (4)	1,4-dioxiane	50	trace	1a' (100%)
7	$I_{2}(1)$	TBHP (4)	1,4-dioxiane	50	trace	1a' (100%)
8	TBAI (1.5)	$H_2O_2(1)$	1,4-dioxiane	50	trace	1a' (100%)
9	TBAF (2)	TBHP (4)	1,4-dioxiane	50	trace	1a' (100%)
10	TBAB(2)	TBHP (4)	1,4-dioxiane	50	trace	1a' (100%)
11	I ₂ (1)	$[Bu_4N]^+[OH]^-(2)$	1,4-dioxiane	50	trace	1a' (100%)
12	TBAI (2)	TBHP (4)	1,4-dioxiane	50	83%	-
13	TBAI (1.5)	TBHP (4)	1,4-dioxiane	50	<40%	1a' (60%)
14	TBAI (1.2)	TBHP (4)	1,4-dioxiane	50	<20%	$\frac{1a(40\%) + 1a'}{(40\%)}$
15	TBAI (1.0)	TBHP (4)	1,4-dioxiane	50	<10%	1a (45%) + 7 (45%)
16	TBAI (0.8)	TBHP (4)	1,4-dioxiane	50	<10%	1a (30%) + 1a' (67%)
17	TBAI (0.4)	TBHP (4)	1,4-dioxiane	50	trace	1a (85%) + 1a' 13%)
18	TBAI (0.2)	TBHP (4)	1,4-dioxiane	50	trace	1a (89%) + 1a' (10%)
19	TBAI (0.1)	TBHP (4)	1,4-dioxiane	50	trace	1a (91%)+ 1a' (8%)
20	-	TBHP (4)	1,4-dioxiane	50	trace	6 (100%)
21	TBAI (2)	-	1,4-dioxiane	50	trace	1a' (100%)
22	TBAI (2)	TBHP (4)	1,4-dioxiane	70	68%	1a' (15%)
23	TBAI (2)	TBHP (4)	1,4-dioxiane	90	61%	1a' (10%)
24	TBAI (2)	TBHP (4)	1,4-dioxiane	r.t.	trace	1a' (100%)
25	TBAI (2)	TBHP (4)	PEG400	50	trace	1a' (100%)
26	TBAI (2)	TBHP (4)	H_2O	50	22%	1a' (75%)
27	TBAI (2)	TBHP (4)	DCE	50	42%	-
28	TBAI (2)	TBHP (4)	CH ₃ CN	50	76%	-

29	TBAI $(2)^d$	TBAI (2)	TBHP (4)	CH ₃ CN	50	71%
30 ^e	TBN (0.2)	DDQ (0.2)	CH ₃ CN	rt	trace	1a(95%)+ 1a' (5%)
31 ^e	RB (0.2)	-	CH ₃ CN	rt	trace	1a (98%)+ 1a' (2%)
32	AgNO ₃ (0.2)	NH ₄ S ₂ O ₈ (0.2)	CH ₃ CN	50	trace	1a(65%)+ 1a' (35%)

Reaction conditions: Unless otherwise noted, all reactions were conducted on a 0.2 mmol scale of **1a**, **1a**:**2a** = 1:2; **1a** (0.2 mmol, 1 equiv.), **2a** (0.4 mmol, 2 equiv.), solvent (2 mL), additive (x equiv.), oxidant (0.8 mmol, 4 equiv.), $T/^{\circ}C$, 2-12h. Isolated yield. In air. ^{*a*} Cu(OAc)₂ (0.04 mmol), TBAI (0.04 mmol). ^{*b*} Cu(OAc)₂ (0.04 mmol), TBAI (0.2 mmol). ^{*c*} CuI (0.04 mmol). ^{*d*} Under N₂. ^{*e*} Blue led, rt.

2.3 General procedures B: C(sp³)-H Amination of Ethers

In a 4 mL sealed vial equipped with a stir bar, *N*-sulfonyl-1,2,3-triazoles **1** (0.2 mmol) and 2 mL acetonitrile were added. Then ethers **2** (1 mmol) and TBAI (147mg, 0.4 mmol) and TBHP (72mg, 0.8 mmol) were added to the mixture. Then, the reaction was allowed to stir at 50 °C for 2-8h. After the completion of the reaction and the evaporation of the solvent under the reduced pressure, the mixture was purified by column chromatography using petroleum ether/ethyl acetate mixture (4:1) as eluent to afford product in high yield and purity.

2.4 The experimental procedure for the synthesis of 3a (5 mmol)

In a tube (35 mL), 1-(methylsulfonyl)-4-phenyl-1*H*-1,2,3-triazole **1a** (1.17g, 5 mmol), 1,4-dioxane **2a** (5 mL), TBAI (3.69g, 10 mmol) and TBHP (2800 μ L, 20 mmol) were added to 20 mL acetonitrile. Then, the tube was sealed and the reaction was allowed to stir at 50°C for 8h. After completion of the reaction, the solution was

concentrated in vacuum, the crude mixtures were purified by flash column chromatography using a mixture of petroleum ether and ethyl acetate (10:1~4:1) as eluent to give the desired product 3a in 63% yield (0.73 g).

2.5 Perform reactions by using 4-phenyl-1H-1,2,3-triazole

Scheme S1. Perform reactions by using 4-phenyl-1*H*-1,2,3-triazole

In a 4 mL sealed vial equipped with a stir bar, 4-phenyl-1*H*-1,2,3-triazole **1a'** (0.2 mmol) and 2 mL acetonitrile were added. Then the 1,4-dioxane **2a** (1 mmol,) and TBAI (147mg, 0.4 mmol) and TBHP (78mg, 0.8 mmol) were added to the mixture. Then, reaction was allowed to stir at 50°C for 8 h. After the completion of the reaction, the mixture was purified by column chromatography using petroleum ether/ethyl acetate mixture (4:1) as eluent to afford the desired N^2 -product **3a** in 48% yield and N^1 -product **3a'** in 17 % yield.

Scheme S2. Attempts for other ethers with N-sulfonyl-1,2,3-triazoles

4. Single crystal X-ray structures

4.1 Single crystal X-ray structures of 3g (CCDC Number: 2234198)

The method for the crystal growth of 3g is as follows: In a 10 mL vial, 3g (10 mg) was dissolved in 1.5 mL DCM, then 5mL hexane was added carefully, making a clear stratification of solution. The vial was placed at room temperature about three days.

Fig. S1. ORTEP diagram for the compound **3g**. Thermal ellipsoids are shown at the 50% probability level.

* Crystal data and structure refinement for exp 2860.

Identification code	exp_2860
Empirical formula	$C_{12}H_{12}BrN_3O_2 \\$
Formula weight	310.16
Temperature/K	297.52(10)
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	14.8086(2)
b/Å	9.1808(2)
c/Å	9.3863(2)
a/°	90
β/°	97.2030(10)
$\gamma/^{\circ}$	90
Volume/Å ³	1266.04(4)

Z	4
$\rho_{calc}g/cm^3$	1.627
μ/mm^{-1}	4.428
F(000)	624.0
Crystal size/mm ³	$0.38 \times 0.26 \times 0.22$
Radiation	$CuK\alpha \ (\lambda = 1.54184)$
2Θ range for data collection/ $^{\circ}$	^o 6.016 to 134.146
Index ranges	$-17 \leq h \leq 17, -10 \leq k \leq 10, -11 \leq l \leq 11$
Reflections collected	26271
Independent reflections	2253 [$R_{int} = 0.0498$, $R_{sigma} = 0.0190$]
Data/restraints/parameters	2253/0/163
Goodness-of-fit on F ²	1.100
Final R indexes [I>=2 _o (I)]	$R_1 = 0.0384, \mathrm{w}R_2 = 0.1080$
Final R indexes [all data]	$R_1 = 0.0415, \mathrm{wR}_2 = 0.1105$
Largest diff. peak/hole / e Å ⁻³	0.44/-0.52

5. Preliminary mechanistic studies

5.1 The addition of TEMPO in the model reaction system

In a tube (4 mL), TEMPO (0.4mmol, 62.8mg), *N*-sulfonyl-1,2,3-triazoles **1a** (0.2 mmol), 1,4-dioxane **2a** (1 mmol), TBAI (147mg, 0.4 mmol), and TBHP (78mg, 0.8 mmol) were dissolved into 2 mL CH₃CN. Then, the tube was sealed and the reaction was allowed to stir at 50 °C for 8 h. The reaction was completely inhibited and TEMPO-trapped complex (TEMPO-1,4-dioxane) **4a** was detected by LC-MS analysis.

Fig. S2. LCMS spectra of TEMPO-1,4-dioxane under standard condition

The same reactions were repeated in the presence of BHT (88 mg, 0.4 mmol) under otherwise identical conditions which revealed that the yields of the desired product 3a and 3a were <1% by using NMR detected, while the scavenger was observed to form phenyl triazole-substituted BHT in 88% isolated yield.

5.2 Intermolecular Kinetic Isotopic Effect (KIE)

In a tube (4 mL), *N*-sulfonyl-1,2,3-triazoles **1a** (0.2 mmol, 46.6 mg), THF **2l** (0.5 mL), d_8 -THF **2l'** (0.5 mL), TBAI (147mg, 0.4 mmol), and TBHP (78mg, 0.8 mmol) were dissolved into 2mL CH₃CN. Then, the tube was sealed and the reaction was allowed to stir at 50°C for 1 h. When the reaction was finished, the pure product was obtained by flash column chromatography on silica gel with a total yield of 32% and detected by ¹H NMR to determine the exact KIE value. From the following ¹H NMR spectrum, we can calculate the KIE value to be $k_H/k_D = 0.85/0.15 = 5.67$.

5.3 The transformation of product 3a' to product 3a under standard condition

3a' were prepared according to previously reported synthetic procedures.² And then in a 4 mL sealed vial equipped with a stir bar, **3a'** (46.4 mg, 0.2 mmol) and 2 mL acetonitrile were added. Then the 1,4-dioxane **2a** (1 mmol) and TBAI (147mg, 0.4 mmol) and TBHP (78mg, 0.8 mmol) were added to the mixture. Then, the reaction was allowed to stir at 50°C or 90°C for 8 h under standard conditions. But **3a** was not detected in the reaction system.

Fig. S3. Negative-ion ESI mass spectrum of the reaction mixture.

5.5 Clarify how to form the desired carbon-centered radicals

In a tube (4 mL), *N*-sulfonyl-1,2,3-triazoles **1a** (0.2 mmol, 46.6 mg), **2a** (0.5 mL) or **4a** (0.4 mmol), $[Bu_4N]^+[OH]^-$ (0.2 mmol), TBHP (0.8 mmol) and I₂ (0.4 mmol) were dissolved into 2mL CH₃CN. Then, the tube was sealed and the reaction was allowed to stir at 50 °C for 8 h. **3a** was observed in micro yields.

6. DFT calculation

Computational Methods: All the DFT calculations were carried out in the Gaussian16 software package. The geometrical structures of reactants, transition states and products were directly optimized with using the functional B3LYP-D3(BJ) combined with a basis set def2-SVP. Single-point energies were calculated with a larger basis set def2-TZVP, denoted as the B3LYP-D3(BJ)/def2-TZVP method. The solvent effect of 1,4-Dioxane is described by using the SMD model. The frequency analysis was performed at the same computational level as single point calculation to identify the minima or transition states. The calculated Gibbs free energy is in kcal/mol at the temperature of 298.15 K.

Reaction Coordinate

Fig. S4. Calculated free energy profile for *N*-Sulfonyl-1,2,3-triazole **1a** with possible reaction pathways

Coordinates of Optimized Structures

1a			
С	-0.75648900	-0.27957700	0.03183200
С	0.29541500	0.62105300	0.01460800
Ν	1.40185200	-0.17594200	0.05390200
Н	0.36858900	1.70273000	-0.02299600
С	-2.20562500	-0.04923100	0.00582100
С	-2.73560600	1.25153600	-0.03498600
С	-3.08734000	-1.14352700	0.02189000
С	-4.11527000	1.45383200	-0.06009300
Н	-2.06621800	2.11485400	-0.04593400
С	-4.46647700	-0.93718800	-0.00310000
Н	-2.67138100	-2.15130400	0.05489000
С	-4.98630800	0.36006400	-0.04440700
Н	-4.51284200	2.47096800	-0.09120700
Н	-5.14140300	-1.79633500	0.01030900
Н	-6.06697900	0.51921200	-0.06357800
Ν	-0.21899800	-1.54653300	0.07450600
Ν	1.06829900	-1.48446400	0.09404500
S	3.08187500	0.32968600	0.11768000
0	3.65529300	-0.18214700	1.34796500
0	3.02859000	1.75283500	-0.18962000
С	3.72390100	-0.60114500	-1.26629300
Н	4.80568900	-0.41074600	-1.27804100
Н	3.50487000	-1.65993600	-1.07981400
Η	3.24333100	-0.23624300	-2.18204800
3a			
C	-0.88682500	0.73064100	-0.16327700
C	-0.39723100	2.04828400	0.01665800
Ν	0.91690400	2.04820500	-0.20630700
Н	-0.92098100	2.96307900	0.28296700
С	-2.24823500	0.19512400	-0.03781600
С	-3.30313300	1.00646600	0.41327900
С	-2.51889900	-1.14441900	-0.36923500
С	-4.59529600	0.49259300	0.52953400
Н	-3.11350600	2.04814500	0.68063000
С	-3.81052000	-1.65552900	-0.25072600
Н	-1.70127900	-1.77354000	-0.72421300
С	-4.85460400	-0.84026700	0.19859400
Н	-5.40404700	1.13694900	0.88241400
Н	-4.00572800	-2.69816400	-0.51323500
Н	-5.86636400	-1.24224200	0.28995700
Ν	0.16139600	-0.03858600	-0.49877600

Ν	1.19115200	0.78798300	-0.50126000
С	2.76730500	-1.15766500	1.27894000
С	2.53646700	-1.87488000	-0.04571900
С	2.57450500	0.37134600	-0.86758500
С	3.58276900	0.78352900	0.22894400
Н	3.03929900	-1.88581500	2.05722500
Н	3.32459800	-2.62664900	-0.20794200
Н	3.20331100	1.68799700	0.73815300
Н	1.55240500	-2.37106100	-0.05665100
Н	1.85136600	-0.63578100	1.61517200
Н	4.53736200	1.03517500	-0.25743000
Н	2.80670400	0.91265600	-1.79701400
0	3.84857700	-0.26077900	1.14077500
0	2.61803300	-0.97238400	-1.15767200
3a'			
C	-1.18967300	0.10931400	0.12608100
С	-0.22575500	-0.88594200	0.18818000
Ν	0.95217100	-0.21592000	0.28452300
Н	-0.27632500	-1.97008300	0.17011800
С	-2.65125200	0.01845100	0.02991300
С	-3.30524400	-1.22417200	-0.02621100
С	-3.42287600	1.19288100	-0.00890200
С	-4.69547600	-1.29175200	-0.11860800
Н	-2.72426600	-2.14906000	0.00159900
С	-4.81257100	1.12191700	-0.10144500
Н	-2.91062100	2.15488600	0.03486100
С	-5.45536200	-0.11872000	-0.15658900
Н	-5.18861100	-2.26585600	-0.16162700
Н	-5.39968700	2.04308900	-0.13069200
Н	-6.54420300	-0.17197400	-0.22901000
Ν	-0.53433600	1.31260200	0.17474800
Ν	0.73993800	1.11545100	0.26409300
С	2.30779600	-0.76359900	0.25131700
С	3.22862600	0.00968700	1.21801700
Н	3.10268900	-0.37324400	2.24041900
С	3.62930600	0.36073000	-1.33899200
С	4.87212100	0.33293100	-0.43922900
Н	3.90999800	0.29389700	-2.39915100
Н	5.29426200	1.35399900	-0.34912600
0	4.56438000	-0.20122900	0.84070500
0	2.82217500	-0.77349300	-1.05179600
Н	3.04487600	1.28698400	-1.20119200
Н	5.64662100	-0.32201100	-0.86699900

S18

Н	2.95301200	1.07855100	1.21953400
Н	2.21755500	-1.81669600	0.55525200

B'

С	2.55276200	-0.49724400	-0.23166900
С	1.84490400	-1.36753600	0.57486900
Ν	0.53624100	-1.27346100	0.12872300
Н	2.11140400	-1.99718800	1.41678700
С	3.96712900	-0.11095700	-0.18340500
С	4.84124500	-0.62833900	0.78860100
С	4.47150900	0.80748800	-1.12227800
С	6.18007500	-0.23762300	0.82291700
Н	4.46750400	-1.34108100	1.52697000
С	5.81106100	1.19528300	-1.08640000
Н	3.78710600	1.19935600	-1.87607600
С	6.67250000	0.67665000	-0.11426100
Н	6.84415100	-0.64957700	1.58736300
Н	6.18690100	1.90898100	-1.82449800
Н	7.72150200	0.98247400	-0.08636800
Ν	1.70151300	0.06171000	-1.14618400
Ν	0.48114500	-0.40228000	-0.95107000
S	-0.46221400	-2.73521700	0.08139100
0	-0.49529000	-3.17709300	1.47662800
0	0.06406500	-3.63209300	-0.94939200
С	-2.01900200	-2.05900300	-0.44478900
Н	-2.69745900	-2.91926300	-0.51452800
Н	-2.41793000	-1.32068100	0.26698200
Н	-1.86663700	-1.59796800	-1.42687100
С	1.10060200	2.33846300	1.24778600
С	0.96022700	2.99600900	-0.11345700
С	-0.75516100	1.36284000	-0.40765100
С	-0.97028500	1.26573200	1.07204300
Н	1.68942300	2.99069600	1.91221600
Н	0.63695700	4.04425900	0.01116900
Н	-0.78931900	0.21975300	1.40208400
Н	1.90985400	2.97492100	-0.67070600
Н	1.63322100	1.37466500	1.16282600
Н	-2.03608400	1.47901300	1.27177400
Н	-1.57812800	1.04691700	-1.05206900
0	-0.17347300	2.17165200	1.81985700
0	-0.02687400	2.35273100	-0.92484200
Ι	-4.53079500	0.57536300	-0.12870600

B

С	0.93152700	-0.65110400	-0.18649900
С	-0.05246300	-1.19284900	0.61892900
Ν	-1.24619500	-0.68516400	0.11605800
Н	-0.03454600	-1.83786000	1.49091700
С	2.39240900	-0.75949700	-0.08808400
С	3.00430100	-1.47253900	0.95683000
С	3.20435200	-0.13168600	-1.04906900
С	4.39411300	-1.55360200	1.04061900
Н	2.38981200	-1.96599400	1.71295900
С	4.59419800	-0.21569600	-0.96288800
Н	2.72307000	0.41159100	-1.86352200
С	5.19485200	-0.92504100	0.08152200
Н	4.85546200	-2.11112100	1.85917500
Н	5.21364900	0.27388300	-1.71831300
Н	6.28342700	-0.98995200	0.14787900
Ν	0.34574300	0.11701400	-1.15534700
Ν	-0.96441600	0.09763200	-1.00177200
S	-2.64116300	-1.75848000	0.00985500
0	-2.89612500	-2.15314900	1.39172300
0	-2.42531500	-2.75319000	-1.03377100
С	-3.88251600	-0.59965400	-0.55397000
Н	-4.79400000	-1.19819800	-0.68302600
Н	-4.02617400	0.17353000	0.20932400
Н	-3.54186600	-0.18791000	-1.51134100
С	0.36525300	2.56839800	1.15477000
С	0.60428800	3.10304900	-0.24596900
С	-1.53186100	2.11267700	-0.66679500
С	-1.91163500	2.21654500	0.79031900
Н	1.06312200	3.04294300	1.85979800
Н	0.69458600	4.20101500	-0.22375600
Н	-2.08936100	1.19765200	1.19851900
Н	1.51180500	2.67238600	-0.69462100
Н	0.52819400	1.47721800	1.19987300
Н	-2.85764100	2.77843000	0.88557800
Н	-2.33433400	2.05811600	-1.40462800
0	-0.94826600	2.90131700	1.55801900
0	-0.49447300	2.80996700	-1.12513900
С			
С	-1.64917600	1.52921600	-0.27686200
С	-1.87903000	0.52179300	0.65957800
Ν	-2.33168600	-0.53867300	-0.06761800
Н	-1.71516100	0.45244300	1.72973200
Ν	-2.01398200	1.04841800	-1.50259400

Ν	-2.44523200	-0.18096100	-1.37306000
С	-1.10820600	2.87946800	-0.10268000
С	-0.94925500	3.72493800	-1.21628500
С	-0.73459100	3.35993300	1.16514300
С	-0.43680100	5.01200400	-1.06178500
Н	-1.23112200	3.34352000	-2.19863400
С	-0.22012700	4.64778200	1.31594100
Н	-0.84004900	2.71599600	2.04094400
С	-0.06973500	5.48160600	0.20396300
Н	-0.31485200	5.65360100	-1.93858300
Н	0.07296900	4.99964300	2.30836900
Н	0.33974300	6.48799600	0.32191400
S	-3.95338300	-1.57801300	0.54183700
0	-3.78254600	-2.95644400	0.04943200
0	-4.11509100	-1.31826400	1.98156600
С	-5.30697700	-0.80256200	-0.37741000
Н	-5.04056400	-0.86235800	-1.43894900
Н	-6.22025300	-1.36619500	-0.14110100
Н	-5.37668300	0.23930000	-0.04122700
С	1.14408000	-1.09472300	-1.06411400
С	1.24682500	-1.16614000	0.44071700
С	-0.76162800	-2.47258300	0.28972500
С	-0.51484400	-2.73160100	-1.15862800
Н	2.14512600	-0.84526600	-1.44458000
Н	2.11730200	-1.76790800	0.74670100
Н	-1.29515600	-2.19083800	-1.74111200
Н	1.33973000	-0.17949500	0.90821500
Н	0.41573600	-0.32864200	-1.39003200
Н	-0.65881000	-3.80932900	-1.35258100
Н	-1.56077300	-2.98452300	0.82768700
Ο	0.77495800	-2.37324200	-1.57182400
Ο	0.04934600	-1.78289900	1.02933000
Ι	4.76673000	-0.61319300	0.18726200
В"			
С	-2.81126100	-0.17425100	-0.29533400
С	-1.66322300	-0.64124700	-0.90634600
Ν	-1.09830700	-1.52946900	0.01023900
Н	-1.17052600	-0.40205800	-1.84246600
С	-3.75903200	0.85414600	-0.74153000
С	-3.63432200	1.46579800	-2.00037300
С	-4.80632500	1.25078800	0.10855200
С	-4.53405300	2.45400700	-2.39886300
Н	-2.83001400	1.16596100	-2.67558900

С	-5.70562400	2.23822400	-0.29447500
Н	-4.89885500	0.76771000	1.08231700
С	-5.57293500	2.84414700	-1.54749400
Н	-4.42556700	2.92104700	-3.38052500
Н	-6.51690900	2.53659500	0.37390800
Н	-6.27776300	3.61757300	-1.86154200
Ν	-2.95444900	-0.78618300	0.91830000
Ν	-1.94840800	-1.60814300	1.12553300
S	-0.52717600	-3.06807600	-0.62432000
0	0.57507900	-2.69873000	-1.52833000
0	-1.63536100	-3.86518100	-1.13225600
С	0.12035100	-3.83392900	0.85393300
Н	0.42736600	-4.83987400	0.53879800
Н	0.97735600	-3.25368300	1.21408700
Н	-0.69563400	-3.87750700	1.58547100
С	-0.25611300	1.46051500	1.72954400
С	-1.47767800	1.52050800	2.62750500
С	-1.02996800	-0.81448800	2.89000200
С	0.42406800	-0.60814000	2.55322700
Н	0.11901800	2.47404100	1.52898000
Н	-1.29324200	2.19016700	3.48218000
Н	0.67562900	-1.16760200	1.63143300
Н	-2.37262700	1.86299200	2.08619700
Н	-0.48986500	0.99061600	0.75855600
Н	1.05028800	-1.01270700	3.36761900
Н	-1.31720100	-1.70227800	3.45600900
0	0.76390900	0.74862300	2.40146900
0	-1.78811000	0.23064000	3.19075800
Ι	2.19289300	-0.45806200	-0.90868500
Ι	3.55039200	1.79514700	-0.12259900

7. ¹H NMR, ¹⁹F NMR and ¹³C NMR data of compounds

2-(1,4-dioxan-2-yl)-4-phenyl-2*H***-1,2,3-triazole** was synthesized by following Procedure B. The crude material was purified by column chromatography using a gradient eluent of PE/EA (10:1-4:1) to provide **3a**. Yield: 83%. 37.6 mg. Yellow oil.

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.98 (s, 1H), 7.91 – 7.74 (m, 2H), 7.50 – 7.38 (m, 3H), 5.88 (dd, J = 7.6, 2.8 Hz, 1H), 4.41 (dd, J = 11.7, 7.6 Hz, 1H), 4.16 (dd, J = 11.8, 2.8 Hz, 1H), 4.12 – 4.03 (m, 1H), 3.99 (dd, J = 11.8, 5.1 Hz, 1H), 3.87 (dd, J = 5.4, 3.7 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 148.8, 132.2, 130.0, 128.9, 128.9, 126.2, 85.2, 67.7, 65.9, 65.7.

HRMS calc. for $C_{12}H_{13}N_3NaO_2$ (M+Na)⁺, 254.0900; found, 254.0904.

methyl 4-(2-(1,4-dioxan-2-yl)-2*H***-1,2,3-triazol-4-yl) benzoate** was synthesized by following Procedure B. The crude material was purified by column chromatography using a gradient eluent of PE/EA (10:1-4:1) to provide **3b**. Yield:72%. 41.6mg. White solid, $mp = 62.3 \degree C - 62.5 \degree C$.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.11 (d, *J* = 8.0 Hz, 2H), 8.02 (s, 1H), 7.90 (d, *J* = 8.0 Hz, 2H), 5.87 (dd, *J* = 7.4, 2.8 Hz, 1H), 4.39 (dd, *J* = 11.7, 7.5 Hz, 1H), 4.19 – 4.10 (m, 1H), 4.09 – 3.97 (m, 2H), 3.94 (s, 3H), 3.88 – 3.84 (m, 2H).

¹³**C NMR** (101 MHz, CDCl₃) *δ* 166.7, 147.7, 134.0, 132.6, 130.3, 130.2, 126.0, 85.3, 67.6, 65.9, 65.6, 52.2.

HRMS calc. for C₁₄H₁₅N₃NaO₄ (M+Na)⁺, 312.0955; found, 312.0957.

2-(1,4-dioxan-2-yl)-4-(thiophen-2-yl)-2H-1,2,3-triazole was synthesized by following Procedure B. The crude material was purified by column chromatography using a gradient eluent of PE/EA (10:1-4:1) to provide **3c**. Yield:76%. 39.3mg. Yellow oil.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.92 (s, 1H), 7.73 (d, J = 7.5 Hz, 2H), 7.27 (d, J = 7.5 Hz, 2H), 5.95 – 5.77 (dt, J = 7.3, 1.7 Hz, 1H), 4.38 (dd, J = 11.6, 7.8 Hz, 1H), 4.20 – 4.09 (m, 1H), 4.07 – 4.01 (m, 1H), 3.97 (dt, J = 11.8, 5.7 Hz, 1H), 3.88 – 3.78 (m, 2H), 2.68 (q, J = 7.6 Hz, 2H), 1.26 (t, J = 7.6 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) *δ* 148.9, 145.2, 132.1, 128.4, 127.2, 126.2, 85.1, 67.7, 65.9, 65.7, 28.7, 15.5.

HRMS calc. for C₁₄H₁₇N₃NaO₂ (M+Na)⁺, 282.1213; found, 282.1221.

methyl 4-(2-(1,4-dioxan-2-yl)-2H-1,2,3-triazol-4-yl) benzoate was synthesized by following Procedure B. The crude material was purified by column chromatography using a gradient eluent of PE/EA (10:1-4:1) to provide **3d.** Yield:75%. 39.1mg. White solid, $mp = 57.6 \circ C - 57.9 \circ C$.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.88 (s, 1H), 7.75 (d, J = 7.7 Hz, 2H), 6.96 (d, J = 7.8 Hz, 2H), 5.84 (dt, J = 7.9, 2.2 Hz, 1H), 4.37 (dd, J = 11.6, 7.8 Hz, 1H), 4.13 (d, J = 11.7 Hz, 1H), 4.08 – 3.91 (m, 2H), 3.85 (m, 5H).

¹³**C NMR** (101 MHz, CDCl₃) *δ* 160.1, 148.6, 131.7, 127.5, 122.5, 114.3, 85.1, 67.7, 65.9, 65.8, 55.4.

HRMS calc. for C₁₃H₁₅N₃NaO₃ (M+Na)⁺, 284.1006; found, 284.1002.

2-(1,4-dioxan-2-yl)-4-(p-tolyl)-2H-1,2,3-triazole was synthesized by following Procedure B. The crude material was purified by column chromatography using a gradient eluent of PE/EA (10:1-4:1) to provide **3e**. Yield: 83 %. 40.6mg. Yellow oil. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.92 (s, 1H), 7.71 (dd, *J* = 8.0, 1.5 Hz, 2H), 7.26 (d, *J* = 4.2 Hz, 2H), 5.85 (dt, *J* = 7.7, 1.9 Hz, 1H), 4.38 (ddd, *J* = 11.7, 7.7, 1.4 Hz, 1H), 4.18 - 4.10 (m, 1H), 4.08 - 3.93 (m, 2H), 3.84 (dd, *J* = 5.5, 3.0 Hz, 2H), 2.39 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 148.9, 138.8, 132.1, 129.6, 126.9, 126.1, 85.1, 67.7, 65.9, 65.8, 21.4.

HRMS calc. for C₁₃H₁₅N₃NaO₂ (M+Na)⁺, 268.1056; found, 268.1061.

2-(1,4-dioxan-2-yl)-4-(4-fluorophenyl)-2*H***-1,2,3-triazole was synthesized by following Procedure B. The crude material was purified by column chromatography using a gradient eluent of PE/EA (10:1-4:1) to provide 3f**. Yield: 77%. 46.0mg. White solid, $mp = 64.1 \text{ }^{\circ}\text{C} - 64.6 \text{ }^{\circ}\text{C}$.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.01 (s, 1H), 7.94 (d, J = 8.3 Hz, 2H), 7.70 (q, J = 10.6, 8.8 Hz, 2H), 5.88 (dd, J = 7.5, 2.8 Hz, 1H), 4.39 (dd, J = 11.8, 7.4 Hz, 1H), 4.14 (dd, J = 11.8, 2.8 Hz, 1H), 4.10 – 4.03 (m, 1H), 3.98 (dt, J = 11.9, 7.2, 4.6 Hz, 1H), 3.90 – 3.82 (m, 2H).

¹³**C** NMR (101 MHz, CDCl₃) δ 147.4, 132.5, 129.3, 128.9, 128.2, 126.4, 125.87 (dd, J = 6.9, 2.6 Hz), 85.3, 67.6, 65.9, 65.7.

¹⁹**F** NMR (376 MHz, CDCl₃) δ -62.69.

HRMS calc. for C₁₂H₁₂FN₃NaO₂ (M+Na)⁺, 272.0806; found, 272.0807.

4-(4-bromophenyl)-2-(1,4-dioxan-2-yl)-2H-1,2,3-triazole was synthesized by following Procedure B. The crude material was purified by column chromatography using a gradient eluent of PE/EA (10:1-4:1) to provide **3g**. Yield: 75%. 46.3mg. White solid, $mp = 55.3 \text{ }^{\circ}\text{C} - 56.6 \text{ }^{\circ}\text{C}$.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.93 (s, 1H), 7.69 (d, J = 7.9 Hz, 2H), 7.56 (d, J = 7.7 Hz, 2H), 5.85 (dt, J = 7.1, 2.0 Hz, 1H), 4.37 (dd, J = 11.6, 7.6 Hz, 1H), 4.13 (dt, J = 11.8, 2.0 Hz, 1H), 4.08 – 4.01 (m, 1H), 3.97 (dt, J = 11.8, 5.3 Hz, 1H), 3.88 – 3.79 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 147.8, 132.1, 132.1, 128.8, 127.7, 122.9, 85.2, 67.6, 65.9, 65.7.

HRMS calc. for C₁₂H₁₂BrN₃NaO₂ (M+Na)⁺, 332.0005; found, 332.0007.

4-([1,1'-biphenyl]-4-yl)-2-(1,4-dioxan-2-yl)-2H-1,2,3-triazole was synthesized by following Procedure B. The crude material was purified by column chromatography using a gradient eluent of PE/EA (10:1-4:1) to provide **3h**. Yield: 82%. 50.3mg. White solid, mp = $62.3 \degree C - 62.5 \degree C$.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.99 (d, J = 1.3 Hz, 1H), 7.89 (dd, J = 8.2, 1.4 Hz, 2H), 7.70 – 7.65 (m, 2H), 7.66 – 7.60 (m, 2H), 7.49 – 7.41 (m, 2H), 7.40 – 7.32 (m, 1H), 5.87 (dd, J = 8.3, 2.8 Hz, 1H), 4.40 (m, J = 11.8, 7.6, 1.3 Hz, 1H), 4.15 (dd, J = 11.9, 2.9 Hz, 1H), 4.10 – 4.03 (m, 1H), 3.98 (dt, J = 11.8, 5.8 Hz, 1H), 3.85 (dd, J = 5.7, 3.2 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) *δ* 148.5, 141.6, 140.4, 132.3, 128.9, 128.7, 127.6, 127.6, 127.1, 126.6, 85.2, 67.7, 65.9, 65.8.

HRMS calc. for $C_{18}H_{17}N_3NaO_2$ (M+Na)⁺, 330.1213; found, 330.1215.

2-(1,4-dioxan-2-yl)-4-(3-fluorophenyl)-2H-1,2,3-triazole was synthesized by following Procedure B. The crude material was purified by column chromatography using a gradient eluent of PE/EA (10:1-4:1) to provide **3i**. Yield:72%. 35.8mg. Yellow oil.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.95 (s, 1H), 7.56 (dd, J = 17.5, 8.7 Hz, 2H), 7.40 (q, J = 7.6 Hz, 1H), 7.07 (t, J = 7.4 Hz, 1H), 5.86 (dd, J = 7.4, 2.3 Hz, 1H), 4.38 (dd, J = 11.5, 7.6 Hz, 1H), 4.13 (dd, J = 11.7, 2.4 Hz, 1H), 4.05 (dt, J = 12.2, 3.0 Hz, 1H), 3.98 (dt, J = 11.7, 5.1 Hz, 1H), 3.88 – 3.82 (m, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 163.15 (d, J = 246.1 Hz), 147.71 (d, J = 2.9 Hz), 132.3, 131.93 (d, J = 8.4 Hz), 130.52 (d, J = 8.4 Hz), 121.82 (d, J = 3.0 Hz), 115.74 (d, J = 21.1 Hz), 113.16 (d, J = 23.1 Hz), 85.2, 67.6, 65.9, 65.7.

¹⁹**F** NMR (376 MHz, CDCl₃) δ -112.42.

HRMS calc. for $C_{12}H_{12}FN_3NaO_2$ (M+Na)⁺, 272.0806; found, 272.0811.

4-(3-chlorophenyl)-2-(1,4-dioxan-2-yl)-2H-1,2,3-triazole was synthesized by following Procedure B. The crude material was purified by column chromatography using a gradient eluent of PE/EA (10:1-4:1) to provide **3j**. Yield:75%. 39.7mg. Yellow oil.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.95 (s, 1H), 7.83 (d, J = 2.0 Hz, 1H), 7.69 (dd, J = 6.9, 1.7 Hz, 1H), 7.36 (d, J = 7.4 Hz, 2H), 5.86 (dd, J = 7.6, 2.8 Hz, 1H), 4.38 (dd, J = 11.7, 7.5 Hz, 1H), 4.13 (dd, J = 11.8, 2.9 Hz, 1H), 4.08 – 4.02 (m, 1H), 4.01 – 3.94 (m, 1H), 3.89 – 3.81 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) *δ* 147.5, 134.9, 132.3, 131.6, 130.2, 128.9, 126.3, 124.3, 85.2, 67.6, 65.9, 65.7.

HRMS calc. for C₁₂H₁₂ClN₃NaO₂ (M+Na)⁺, 288.0510; found, 288.0514.

2-(tetrahydro-2*H***-pyran-2-yl)-4-(thiophen-2-yl)-2***H***-1,2,3-triazole was synthesized by following Procedure B. The crude material was purified by column chromatography using a gradient eluent of PE/EA (10:1-4:1) to provide 3k**. Yield: 71%. 33.6mg. Yellow oil.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.81 (s, 1H), 7.40 (d, J = 3.4 Hz, 1H), 7.32 (d, J = 5.0 Hz, 1H), 7.07 (t, J = 4.2 Hz, 1H), 5.96 – 5.55 (m, 1H), 4.06 (d, J = 11.5 Hz, 1H), 3.75 (t, J = 10.4 Hz, 1H), 2.44 (dt, J = 13.2, 6.7 Hz, 1H), 2.30 – 2.06 (m, 2H), 1.78 – 1.70 (m, 2H), 1.67 (dd, J = 6.0, 2.9 Hz, 1H).

¹³**C NMR** (101 MHz, CDCl3) *δ* 147.3, 134.5, 131.6, 129.2, 128.8, 127.5, 89.3, 67.6, 29.5, 24.9, 21.9.

HRMS calc. for C₁₁H₁₃N₃ONaS (M+Na)⁺, 258.0672; found, 258.0668.

4-phenyl-2-(tetrahydrofuran-2-yl)-2*H***-1,2,3-triazole** was synthesized by following Procedure B. The crude material was purified by column chromatography

using a gradient eluent of PE/EA (10:1-4:1) to provide **3l**. Yield:84%. 36.1mg. Yellow oil.

¹**H NMR** (400 MHz, Chloroform-d) δ 7.87 (s, 1H), 7.80 (d, J = 8.0 Hz, 2H), 7.42 (t, J = 7.6 Hz, 2H), 7.35 (t, J = 7.6 Hz, 1H), 6.41 – 6.29 (m, 1H), 4.20 (q, J = 7.4 Hz, 1H), 4.06 (q, J = 7.4 Hz, 1H), 2.77 – 2.64 (m, 1H), 2.43 (tq, J = 15.9, 7.5 Hz, 2H), 2.10 (dq, J = 12.3, 7.2, 6.6 Hz, 1H).

¹³**C NMR** (101 MHz, CDCl3) *δ* 148.1, 131.5, 130.4, 128.9, 128.5, 126.1, 92.4, 69.6, 31.9, 24.5.

HRMS calc. for $C_{12}H_{13}N_3NaO (M+Na)^+$, 238.0951; found, 238.0953.

4-phenyl-2-(tetrahydrothiophen-2-yl)-2H-1,2,3-triazole was synthesized by following Procedure B. The crude material was purified by column chromatography using a gradient eluent of PE/EA (10:1-4:1) to provide **3m**. Yield:75%. 34.6mg. Yellow oil.

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.85 (s, 1H), 7.82 – 7.76 (m, 2H), 7.47 – 7.38 (m, 2H), 7.38 – 7.31 (m, 1H), 6.31 (dd, *J* = 6.9, 2.6 Hz, 1H), 3.30 (ddd, *J* = 10.6, 7.0, 4.0 Hz, 1H), 3.02 (td, *J* = 9.6, 6.3 Hz, 1H), 2.78 (dd, *J* = 12.5, 6.2 Hz, 1H), 2.72 – 2.52 (m, 1H), 2.49 – 2.23 (m, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 148.0, 131.4, 130.3, 128.9, 128.5, 126.0, 71.6, 37.5, 33.8, 29.6.

HRMS (ESI) C₁₂H₁₃N₃NaS Calcd. for (M+Na)⁺ 254.0722, Found: 254.0731.

2-(1,3-dioxolan-2-yl)-4-phenyl-2H-1,2,3-triazole was synthesized by following Procedure B. The crude material was purified by column chromatography using a gradient eluent of PE/EA (10:1-4:1) to provide **3n**. Yield:51%, 22.1mg. Yellow oil.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.94 (s, 1H), 7.87 – 7.78 (m, 2H), 7.45 (t, *J* = 7.7 Hz, 2H), 7.38 (t, *J* = 7.3 Hz, 1H), 6.43 (dd, *J* = 6.3, 3.7 Hz, 1H), 5.37 (s, 1H), 5.24 (s, 1H), 4.68 (dd, *J* = 9.3, 3.6 Hz, 1H), 4.40 (dd, *J* = 9.3, 6.2 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 148.9, 132.4, 129.9, 128.9, 128.9, 126.2, 96.5, 87.8, 69.1.

HRMS calc. for $C_{11}H_{12}N_3O_2 (M+H)^+$, 218.0924; found, 218.0917.

4-phenyl-2-(tetrahydro-2H-pyran-2-yl)-2H-1,2,3-triazole was synthesized by following Procedure B. The crude material was purified by column chromatography using a gradient eluent of PE/EA (10:1-4:1) to provide **30**. Yield:77%. 35.2mg. Yellow oil.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.92 (s, 1H), 7.82 (d, *J* = 7.8 Hz, 2H), 7.43 (t, *J* = 7.5 Hz, 2H), 7.36 (t, *J* = 7.0 Hz, 1H), 5.75 (dd, *J* = 9.2, 2.6 Hz, 1H), 4.08 (dt, *J* = 11.9, 3.7 Hz, 1H), 3.77 (dd, *J* = 12.3, 9.2 Hz, 1H), 2.48 (td, *J* = 9.4, 4.0 Hz, 1H), 2.22 – 2.07 (m, 2H), 1.82 – 1.71 (m, 2H), 1.67 (*dt*, *J* = 8.0, 4.1 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 131.6, 130.2, 128.8, 128.6, 126.3, 126.2, 89.2, 67.5, 29.4, 24.8, 21.9.

HRMS calc. for C₁₃H₁₅N₃NaO (M+Na)⁺, 252.1107; found, 252.1109.

2-(1,4-oxathian-3-yl)-4-phenyl-2H-1,2,3-triazole was synthesized by following Procedure B. The crude material was purified by column chromatography using a gradient eluent of PE/EA (10:1-4:1) to provide **3p**. Yield:74%. 36.5mg. Yellow oil. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.93 (s, 1H), 7.81 (d, *J* = 7.6 Hz, 2H), 7.43 (t, *J* = 7.5 Hz, 2H), 7.39 – 7.33 (m, 1H), 5.49 (t, *J* = 3.6 Hz, 1H), 4.51 (dd, *J* = 12.2, 4.2 Hz, 1H), 4.31 (dd, *J* = 12.3, 2.7 Hz, 1H), 4.20 (dt, *J* = 11.9, 4.0 Hz, 1H), 4.07 – 3.96 (m, 1H), 3.46 (ddd, *J* = 13.1, 9.3, 3.1 Hz, 1H), 2.61 (dt, *J* = 13.8, 3.4 Hz, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ 148.2, 131.7, 130.1, 128.9, 128.6, 126.1, 71.5, 68.2,

58.9, 25.5.

HRMS calc. for $C_{12}H_{14}N_3OS (M+H)^+$, 248.0852; found, 248.0853.

2-(1,3-dihydroisobenzofuran-1-yl)-4-phenyl-2H-1,2,3-triazole was synthesized by following Procedure B. The crude material was purified by column chromatography using a gradient eluent of PE/EA (20:1-4:1) to provide **3q**. Yield:64%. 33.6mg. Yellow oil.

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.88 (s, 1H), 7.77 (d, J = 7.5 Hz, 2H), 7.45 (t, J = 5.0 Hz, 2H), 7.43 – 7.38 (m, 3H), 7.36 (s, 1H), 7.35 – 7.31 (m, 2H), 5.51 (dd, J = 12.5, 2.5 Hz, 1H), 5.25 (d, J = 12.4 Hz, 1H).

¹³**C NMR** (101 MHz, CDCl₃) *δ* 148.5, 140.0, 135.5, 132.4, 130.1, 129.8, 128.9, 128.7, 128.1, 126.1, 122.9, 121.4, 95.6, 74.0.

HRMS calc. for $C_{16}H_{14}N_3O(M+H)^+$, 264.1131; found, 264.1139.

2-(isochroman-1-yl)-4-phenyl-2*H***-1,2,3-triazole** was synthesized by following Procedure B. The crude material was purified by column chromatography using a gradient eluent of PE/EA (20:1-4:1) to provide **3r**. Yield:71%. 39.3mg. Yellow oil. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.90 (s, 1H), 7.80 (d, *J* = 7.6 Hz, 2H), 7.42 (t, *J* = 7.5 Hz, 2H), 7.39 – 7.30 (m, 2H), 7.27 (d, *J* = 9.3 Hz, 1H), 7.21 (t, *J* = 7.5 Hz, 1H), 7.06 (s, 1H), 7.03 (d, *J* = 7.8 Hz, 1H), 4.36 (td, *J* = 11.4, 3.4 Hz, 1H), 4.08 (ddd, *J* = 11.5, 5.9, 2.0 Hz, 1H), 3.16 (ddd, *J* = 17.0, 11.4, 5.9 Hz, 1H), 2.86 (dt, *J* = 16.6, 2.8 Hz, 1H).

¹³**C NMR** (101 MHz, CDCl₃) δ 148.4, 134.5, 132.0, 130.7, 130.1, 129.0, 128.9, 128.8, 128.7, 127.0, 126.6, 126.2, 86.7, 61.0, 27.8.

HRMS calc. for $C_{17}H_{16}N_3O (M+H)^+$, 278.1288; found, 278.1289.

2-((2-methoxyethoxy) methyl) -4-phenyl-2H-1,2,3-triazole was synthesized by following Procedure B. The crude material was purified by column chromatography using a gradient eluent of PE/EA (10:1-4:1) to provide **3s'**. Yield: 45%. Yellow oil. 20.9mg. Yellow oil.

¹**H NMR** (400 MHz, Chloroform-d) *δ* 7.96 (s, 1H), 7.88 – 7.79 (m, 2H), 7.44 (t, J = 7.4 Hz, 2H), 7.41 – 7.34 (m, 1H), 5.71 (t, J = 6.0 Hz, 1H), 4.01 (qd, J = 10.4, 6.0 Hz, 2H), 3.40 (s, 3H), 3.37 (s, 3H).

¹³C NMR (101 MHz, CDCl3) δ 148.5, 132.0, 130.1, 128.9, 128.7, 126.1, 92.2, 72.8, 59.5, 56.9.**HRMS** calc. for C₁₂H₁₅N₃NaO₂ (M+Na)⁺, 256.1056; found, 256.1059.

2-(1,2-dimethoxyethyl)-4-phenyl-2*H***-1,2,3-triazole** was synthesized by following Procedure B. The crude material was purified by column chromatography using a gradient eluent of PE/EA (10:1-4:1) to provide **3s**. Yield: 31%. 14.4 mg.

¹**H NMR** (400 MHz, Chloroform-d) δ 7.93 (s, 1H), 7.82 (d, J = 7.4 Hz, 2H), 7.44 (t, J = 7.5 Hz, 2H), 7.37 (t, J = 7.4 Hz, 1H), 5.78 (s, 2H), 3.78 (dd, J = 5.7, 3.5 Hz, 2H), 3.54 (dd, J = 5.7, 3.5 Hz, 2H), 3.37 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 148.9, 132.3, 130.0, 128.9, 128.8, 126.1, 82.9, 71.4, 69.2, 59.1.

HRMS calc. for $C_{12}H_{15}N_3NaO_2$ (M+Na)⁺, 256.1056; found, 256.1059.

2-(1-ethoxyethyl)-4-phenyl-2*H***-1,2,3-triazole** was synthesized by following Procedure B. The crude material was purified by column chromatography using a gradient eluent of PE/EA (10:1-4:1) to provide **3t**. Yield:73%. 31.6mg. Yellow oil. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.83 (s, 1H), 7.75 (d, *J* = 7.3 Hz, 2H), 7.36 (t, *J*

= 7.5 Hz, 2H), 7.28 (t, *J* = 7.2 Hz, 1H), 5.73 (q, *J* = 6.0 Hz, 1H), 3.60 – 3.42 (m, 1H), 3.40 – 3.25 (m, 1H), 1.76 (d, *J* = 6.0 Hz, 3H), 1.09 (t, *J* = 7.1 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 147.9, 131.3, 130.3, 128.9, 128.6, 126.1, 89.5, 64.6, 20.9, 14.8.

HRMS calc. for C₁₂H₁₅N₃NaO (M+Na)⁺, 240.1107; found, 240.1108.

2-((benzyloxy)(phenyl)methyl)-4-phenyl-2H-1,2,3-triazole was synthesized by following Procedure B. The crude material was purified by column chromatography

using a gradient eluent of PE/EA (10:1-4:1) to provide **3u**. Yield:61%. 41.6mg. Yellow oil.

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.81 (d, J = 7.7 Hz, 2H), 7.73 (s, 1H), 7.52 – 7.45 (m, 2H), 7.39 (dd, J = 8.7, 6.1 Hz, 9H), 7.33 (q, J = 7.0, 5.5 Hz, 2H), 6.93 (s, 1H), 4.75 – 4.63 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 148.3, 136.7, 136.4, 136.0, 132.2, 130.3, 129.4,

128.9, 128.7, 128.4, 128.2, 126.6, 126.2, 125.8, 117.3, 91.9, 88.4, 71.1.

HRMS calc. for $C_{22}H_{20}N_{3}O(M+H)^{+}$, 342.1601; found, 342.1609.

4-phenyl-2-(tetrahydrofuran-2-yl)-2H-1,2,3-triazole was synthesized by following Procedure B. The crude material was purified by column chromatography using a gradient eluent of PE/EA (10:1-4:1) to provide **3v.** Yield: 82%. 44.7 mg. Yellow oil.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.91 (s, 1H), 7.83 (d, J = 7.6 Hz, 2H), 7.44 (t, J = 7.5 Hz, 2H), 7.36 (t, J = 7.3 Hz, 1H), 5.60 (t, J = 6.7 Hz, 1H), 3.48 (dt, J = 9.7, 6.7 Hz, 1H), 3.33 (dt, J = 9.6, 6.5 Hz, 1H), 2.19 (dddd, J = 23.2, 16.4, 10.6, 3.7 Hz, 2H), 1.57 – 1.39 (m, 2H), 1.36 – 1.30 (m, 2H), 1.28 – 1.22 (m, 2H), 0.95 (t, J = 7.4 Hz, 3H), 0.86 (t, J = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 147.8, 131.3, 130.4, 128.9, 128.5, 126.1, 93.3, 69.0, 36.7, 31.3, 19.1, 18.1, 13.8, 13.6.

HRMS calc. for C₁₆H₂₃N₃NaO (M+Na)⁺, 296.1733; found, 296.1737.

N-methyl-*N*-((4-phenyl-2*H*-1,2,3-triazol-2-yl) methyl) acetamide was synthesized by following Procedure B. The crude material was purified by column chromatography using a gradient eluent of PE/EA (10:1-4:1) to provide **3w.** Yield: 76%. 37.1 mg. Yellow oil.

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.89 (s, 1H), 7.78 (d, *J* = 7.0 Hz, 2H), 7.40 (dd, *J* = 28.0, 7.4 Hz, 2H), 5.98 (d, *J* = 2.9 Hz, 1H), 5.84 (d, *J* = 3.1 Hz, 2H), 3.10 (dd, *J* = 25.0, 2.9 Hz, 3H), 2.48 (d, *J* = 2.9 Hz, 2H), 2.18 (d, *J* = 2.9 Hz, 1H). **HRMS** calc. for C₁₂H₁₄N₄ONa (M+Na)⁺, 253.1060; found, 253.1056.

1-methyl-5-(4-phenyl-2H-1,2,3-triazol-2-yl) pyrrolidin-2-one was synthesized by following Procedure B. The crude material was purified by column chromatography using a gradient eluent of PE/EA (10:1-0:1) to provide **3s**. Yield:87%. 42.1mg. Yellow oil.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.91 (s, 1H), 7.79 (d, J = 7.7 Hz, 2H), 7.45 (t, J = 7.5 Hz, 2H), 7.39 (d, J = 7.0 Hz, 1H), 6.05 (d, J = 7.5 Hz, 1H), 2.98 (dt, J = 15.4,

8.4 Hz, 1H), 2.75 (s, 3H), 2.68 – 2.58 (m, 1H), 2.57 – 2.46 (m, 2H).

¹³**C NMR** (101 MHz, CDCl₃) *δ* 175.5, 148.7, 131.9, 129.8, 129.0, 128.9, 126.0, 78.9, 29.0, 27.7, 25.2.

HRMS calc. for $C_{13}H_{15}N_4O (M+H)^+$, 243.1240; found, 243.1234.

1,3-dimethyl-4-(4-phenyl-2H-1,2,3-triazol-2-yl) tetrahydropyrimidin-2(1*H*)one-methane was synthesized by following Procedure B. The crude material was purified by column chromatography using a gradient eluent of PE/EA (10:1-0:1) to provide **3y**. Yield: 90%. 43.1mg. Yellow oil.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.89 (s, 1H), 7.85 – 7.76 (m, 2H), 7.44 (t, *J* = 7.5 Hz, 2H), 7.41 – 7.32 (m, 1H), 5.90 (dd, *J* = 4.5, 2.7 Hz, 1H), 3.72 (td, *J* = 12.3, 4.0 Hz, 1H), 3.19 (ddd, *J* = 12.0, 6.0, 1.8 Hz, 1H), 3.05 (s, 3H), 2.94 (s, 3H), 2.53 (tt, *J* = 13.2, 5.2 Hz, 1H), 2.40 – 2.22 (m, 1H).

¹³**C NMR** (101 MHz, CDCl₃) *δ* 155.6, 148.1, 131.3, 130.1, 128.9, 128.7, 126.0, 76.1, 43.7, 36.0, 34.3, 27.3.

HRMS calc. for $C_{14}H_{17}N_5NaO (M+Na)^+$, 310.1638; found, 310.1644.

2-(1,4,7,10,13-pentaoxacyclopentadecan-2-yl)-4-phenyl-2H-1,2,3-triazole was synthesized by following Procedure B. The crude material was purified by column chromatography using a gradient eluent of PE/EA (10:1-0:1) to provide **3z**. Yield: 74%. Yellow oil. 54.0 mg.

¹**H NMR** (400 MHz, Chloroform-d) δ 7.93 (s, 1H), 7.83 (dd, J = 7.3, 1.6 Hz, 2H), 7.43 (dd, J = 8.3, 6.6 Hz, 2H), 7.38 – 7.32 (m, 1H), 6.15 (t, J = 6.2 Hz, 1H), 4.30 (dd, J = 10.7, 5.9 Hz, 1H), 4.17 (dd, J = 10.9, 6.4 Hz, 1H), 3.92 – 3.57 (m, 16H).

¹³**C NMR** (101 MHz, CDCl3) *δ* 148.3, 131.8, 130.3, 128.8, 128.6, 126.1, 91.6, 71.7, 71.5, 71.1, 70.7, 70.7, 70.6, 70.4, 68.6.

HRMS calc. for C₁₈H₂₆N₃O₅ (M+H)⁺, 364.1867; found, 364.1871.

((2*S*)-3-(4-phenyl-2*H*-1,2,3-triazol-2-yl) oxiran-2-yl) methyl butyrate was synthesized by following Procedure B. The crude material was purified by column chromatography using a gradient eluent of PE/EA (10:1-1:1) to provide **3aa**. Yield: 71%. Yellow oil. 40.7 mg.

¹**H NMR** (400 MHz, Chloroform-d) δ 7.88 (s, 1H), 7.77 (dd, *J* = 7.1, 1.7 Hz, 2H), 7.50 – 7.40 (m, 2H), 7.40 – 7.34 (m, 1H), 4.69 – 4.53 (m, 2H), 4.43 (dtd, J = 7.1, 5.1, 3.7 Hz, 1H), 4.27 – 4.10 (m, 1H), 2.35 (t, *J* = 7.4 Hz, 2H), 1.68 (h, *J* = 7.4 Hz, 2H), 0.96 (t, *J* = 7.4 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl3) *δ* 173.5, 148.3, 131.3, 129.9, 129.0, 128.7, 126.0, 68.7, 65.0, 57.2, 36.0, 18.4, 13.7.

HRMS calc. for C₁₅H₁₇N₃ Na O₃ (M+Na)⁺, 310.1162; found, 309.1172.

N-(4-(2-(tetrahydrofuran-2-yl)-2*H*-1,2,3-triazol-4-yl) phenyl) acrylamide was synthesized by following Procedure B. The crude material was purified by column chromatography using a gradient eluent of PE/EA (10:1-1:1) to provide **3bb**. Yield: 53%. Yellow oil. 30.1 mg.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.84 (s, 1H), 7.77 (d, J = 8.4 Hz, 2H), 7.66 (d, J = 8.3 Hz, 2H), 7.43 (s, 1H), 6.46 (d, J = 16.8 Hz, 1H), 6.33 (dd, J = 6.6, 2.5 Hz, 1H), 6.27 (dd, J = 16.8, 10.2 Hz, 1H), 5.86 – 5.76 (m, 1H), 4.20 (q, J = 7.3 Hz, 1H), 4.06 (td,

J = 7.7, 5.8 Hz, 1H), 2.69 (ddd, *J* = 12.6, 7.7, 2.8 Hz, 1H), 2.50 – 2.37 (m, 2H), 2.16 – 2.03 (m, 1H).

¹³**C NMR** (101 MHz, CDCl₃) *δ* 163.5, 147.6, 138.0, 131.2, 131.0, 128.2, 126.8, 126.6, 120.1, 92.3, 69.6, 31.4, 24.5.

HRMS calc. for C₁₅H₁₆N₄NaO₂ (M+Na)⁺, 307.1165; found, 307.1169.

N-(4-(2-(1-ethoxyethyl)-2*H*-1,2,3-triazol-4-yl) phenyl) acrylamide was synthesized by following Procedure B. The crude material was purified by column chromatography using a gradient eluent of PE/EA (10:1-1:1) to provide **3bb**. Yield: 53%. Yellow oil. 30.1 mg.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.88 (s, 1H), 7.81 (d, *J* = 8.6 Hz, 2H), 7.68 (d, *J* = 8.4 Hz, 2H), 7.40 (s, 1H), 6.47 (dd, *J* = 16.8, 1.3 Hz, 1H), 6.27 (dd, *J* = 16.8, 10.2 Hz, 1H), 5.88 – 5.76 (m, 2H), 3.56 (dq, *J* = 9.4, 7.0 Hz, 1H), 3.39 (dq, *J* = 9.5, 7.1 Hz, 1H), 1.83 (d, *J* = 6.0 Hz, 3H), 1.16 (t, *J* = 7.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) *δ* 163.4, 147.4, 138.0, 131.1, 131.0, 128.2, 126.8, 120.1, 89.5, 64.7, 29.7, 20.9, 14.8.

HRMS calc. for C₁₅H₁₈N₄NaO₂ (M+Na)⁺, 309.1322; found, 309.1329.

N-(methylsulfonyl)-*N*-(4-(2-(tetrahydrofuran-2-yl)-2*H*-1,2,3-triazol-4-yl) phenyl) methane sulfonamide was synthesized by following Procedure B. The crude material was purified by column chromatography using a gradient eluent of PE/EA (10:1-1:1) to provide 3bb. Yield: 58%. Yellow oil. 43.2 mg.

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.88 – 7.79 (m, 3H), 7.35 (d, J = 8.3 Hz, 2H), 6.27 (dd, J = 6.4, 2.5 Hz, 1H), 4.13 (q, J = 7.4 Hz, 1H), 4.00 (td, J = 7.8, 5.8 Hz, 1H), 3.35 (s, 6H), 2.61 (ddd, J = 12.1, 6.2, 2.7 Hz, 1H), 2.43 – 2.27 (m, 2H), 2.05 (dq, J = 13.6, 9.0, 8.5 Hz, 1H).

¹³**C NMR** (101 MHz, CDCl₃) δ 145.6, 132.2, 131.7, 130.7, 130.1, 126.2, 91.5, 68.7, 41.7, 30.4, 23.4.

HRMS calc. for C₁₄H₁₈N₄O₅NaS₂ (M+Na)⁺, 409.0611; found, 409.0607.

4-(2-((benzyloxy)(phenyl)methyl)-2H-1,2,3-triazol-4-yl) benzonitrile was synthesized by following Procedure B. The crude material was purified by column chromatography using a gradient eluent of PE/EA (10:1-1:1) to provide **3ee**. Yield: 71%. Yellow oil. 51.9 mg.

¹**H** NMR (400 MHz, Chloroform-*d*) δ 8.00 (s, 1H), 7.96 – 7.90 (m, 2H), 7.72 (d, J = 8.3 Hz, 2H), 7.58 – 7.50 (m, 2H), 7.43 – 7.28 (m, 8H), 6.78 (s, 1H), 4.71 (d, J = 12.0 Hz, 1H), 4.61 (d, J = 12.1 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 146.6, 136.3, 136.2, 134.6, 132.7, 132.6, 129.3,

128.6, 128.5, 128.2, 128.1, 126.6, 126.5, 118.7, 112.1, 92.3, 71.2.

HRMS calc. for $C_{23}H_{18}N_4NaO$ (M+Na)⁺, 389.1373; found, 389.1379.

4-(2-(isochroman-1-yl)-2*H***-1,2,3-triazol-4-yl) benzaldehyde** was synthesized by following Procedure B. The crude material was purified by column chromatography using a gradient eluent of PE/EA (10:1-4:1) to provide **3ff**. Yield: 63%. Yellow oil. 38.4 mg.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 10.04 (s, 1H), 7.96 (dd, J = 18.8, 8.4 Hz, 5H), 7.39 – 7.28 (m, 2H), 7.23 (t, J = 7.3 Hz, 1H), 7.08 (s, 1H), 7.03 (d, J = 7.8 Hz, 1H), 4.37 (td, J = 11.5, 3.4 Hz, 1H), 4.11 (ddd, J = 11.4, 5.9, 2.1 Hz, 1H), 3.18 (ddd, J = 17.0, 11.5, 5.8 Hz, 1H), 2.87 (dt, J = 16.5, 2.8 Hz, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ 191.7, 147.1, 136.2, 135.9, 134.5, 132.6, 130.3, 129.0, 128.9, 127.0, 126.7, 126.6, 87.0, 61.1, 29.7, 27.8. **HRMS** calc. for C₁₈H₁₅N₃O₂Na (M+Na)⁺, 328.1056; found, 328.1055.

2,6-di*tert*-**butyl-4**-((**4-phenyl-2***H***-1,2,3-triazol-2-yl**) **methyl**) **phenol.** The crude material was purified by column chromatography using a gradient eluent of PE/EA (10:1-4:1) to provide **4b**. Yield: 45%. White solid.

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.85 (d, J = 1.1 Hz, 1H), 7.82 – 7.77 (m, 2H), 7.47 – 7.38 (m, 2H), 7.36 – 7.31 (m, 1H), 7.21 (s, 2H), 5.53 (s, 2H), 5.23 (d, J = 1.1 Hz, 1H), 1.42 (d, J = 1.2 Hz, 18H).

¹³**C NMR** (101 MHz, CDCl₃) *δ* 154.2, 148.0, 136.7, 130.8, 128.8, 128.1, 125.7, 125.3, 125.3, 119.4, 54.7, 34.4, 30.2.

2,6-di-*tert*-**butyl-4**-((**4-phenyl-1***H***-1,2,3-triazol-1-yl**) **methyl**) **phenol.** The crude material was purified by column chromatography using a gradient eluent of PE/EA (10:1-1:1) to provide **4c**. Yield: 43%. White solid.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.81 (dd, J = 7.1, 1.3 Hz, 2H), 7.66 (d, J = 1.2 Hz, 1H), 7.44 – 7.35 (m, 2H), 7.35 – 7.27 (m, 1H), 7.15 (s, 2H), 5.46 (s, 2H), 5.32 (s, 1H), 1.42 (d, J = 1.1 Hz, 18H).

¹³**C NMR** (101 MHz, CDCl₃) *δ* 154.2, 148.0, 136.7, 130.8, 128.8, 128.1, 125.7, 125.3, 125.3, 119.4, 54.7, 34.4, 30.2.

8. NMR Spectra of Compounds

7.32 7.73 7.74 7.74 7.74 7.74 7.74 7.74 7.74 7.74 7.74 7.74 7.75 7.74 7.74 7.74 7.74 7.74 7.75 7.74 7.74 7.74 7.74 7.74 7.74 7.75 7.74 7.75 7.74 7.75

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

8.01 7.95 7.95 7.95 7.95 7.95 7.95 7.95 7.95 7.95 7.95 7.95 7.95 7.95 7.140 7.140 7.141 7.133 7.133 7.133 7.133 7.133 7.133 7.133 7.133 7.133 7.133 7.133 7.133 7.133 7.133 7.133 7.140 7.133 7.133 7.133 7.133 7.133 7.133 7.133 7.133 7.133 7.133 7.133 7.133 7.133 7.133 7.134 7.135

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

7.81 7.39 7.31 7.33 7.33 7.33 7.33 7.33 7.33 7.34 7.33 7.34 7.33 7.05 7.06 7.07 7.06 7.07 7.06 7.07 7.06 7.06 7.06 7.07 7.06 7.07 7.06 7.07 7.06 7.07 7.06 7.07 7.06 7.07 7.07 7.08 7.09 7.01 7.01 7.01 7.01 7.01 7.01 7.01 7.01 7.01 7.01 7.01 7.01 7.01

110 100 f1 (ppm) 90 80 150 140 130 120

7.87 7.87 7.87 7.87 7.87 7.87 7.87 7.35 7.87 7.37 7.87 7.37 7.87 7.37 7.87 7.37 <t

7.87 7.81 7.79 7.44 7.42 7.40 7.36 7.33 6.33 6.33 6.33 200</td

148.34 136.67 136.67 136.04 132.20 132.20 132.20 132.20 132.20 122.51 128.57 128.53 126.59 126.59 126.59 126.51 126.51 126.51 126.51 126.53 117.34

$\begin{array}{c} 7.88\\ 7.77\\ 7.88\\ 7.77\\ 7.77\\ 7.78\\ 7.77\\ 7.77\\ 7.78\\ 7.77\\ 7.75\\$

$\begin{array}{c} 7.88\\ 7.82\\$

9. Supplementary References

1.(a) Garlets, Z. J.; Davies, H. M. L., Harnessing the β-Silicon Effect for Regioselective and Stereoselective Rhodium (II)-Catalyzed C–H Functionalization by Donor/Acceptor Carbenes Derived from 1-Sulfonyl-1,2,3-triazoles. *Org. Lett.*, **2018**, 20, 2168–2171. (b) Kwok, S. W.; Zhang, L.; Grimster, N. P.; Fokin, V. V., Catalytic Asymmetric Transannulation of NH-1,2,3-Triazoles with Olefins. *Angew. Chem., Int. Ed.*, **2014**, 53, 3452–3456.

2. Bao, Peng. L.; Yue, H. L.; Meng, N.; Zhao, X. H.; Li, J. S.; Wei, Wei. Copper-Catalyzed Three-Component Reaction of Alkynes, TMSN₃, and Ethers: Regiocontrollable Synthesis of N¹- and N²-Oxyalkylated 1,2,3-Triazoles. *Org. Lett.* **2019**, *21*, 18, 7218–7222.