Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information

Tuning Photochromism of Indeno-Fused 2*H*-Naphthopyrans by

Steric Spirocyclic Groups

Ruiqi Wei¹, Ruiyuan Zhou², Ripei Shen,² Jie Han*,^{1,2}

¹College of Chemistry and Environmental Science, Kashi University, Kashi 844008, P. R. China

²Key Laboratory of Advanced Energy Material Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, P. R. Chin

CONTENTS:

1. Synthesis of compounds NPs	S2
2. NMR Spectra	S7
3. MS Spectra	S16
4. Optical Properties of NPs in the solution	S19
5. Optical Properties of PMMA Film Doped with NP-b	S21
6. X-ray Crystallographic Analysis	
7. References	

1. Synthesis of compounds NPs

5-hydroxy-7*H*-benzo[c]fluoren-7-one**(1)** and 1,1-bis(4-methoxyphenyl)-2-propyn-1-ol were prepared according to the procedures in the literature. ^{1,2}

Synthesis of 5-methoxy-benzofluoren-7(H)-one (2)

A mixture of 5-hydroxy-7H-benzo[c]fluoren-7-one (2.60 g, 10.65 mmol), K_2CO_3 (5.84 g, 42.223 mmol) and CH₃I (2.25 g, 15.84 mmol) in acetonitrile (30 mL) was stirred at room temperature for 4 h. The reaction mixture was poured into H₂O (100 mL) and extracted with ethyl acetate (50 mL × 3). The organic extracts were combined, washed with brine and water, dried with anhydrous MgSO₄, filtered, and the solvent was then removed under reduced pressure. The crude product was purified by silica gel column chromatography using petroleum ether/ethyl acetate (v/v = 20:1) as an eluent affording 5-methoxy-benzofluoren-7(*H*)-one **(2)** was obtained as a reddish-brown solid (2.43 g, 9.34 mmol) in 88% yield. m.p142.6 - 143.8°C.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.32 (d, *J* = 8.3 Hz, 1H), 8.27 (d, *J* = 8.4 Hz, 1H), 7.80 (d, *J* = 7.5 Hz, 1H), 7.61 – 7.50 (m, 3H), 7.42 (t, *J* = 7.5 Hz, 1H), 7.18 (t, *J* = 7.4 Hz, 1H), 7.03 (s, 1H), 4.03 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 194.84, 156.78, 145.52, 135.16, 134.50, 134.48, 132.47, 129.53, 129.28, 128.09, 127.46, 127.44, 124.49, 123.82, 123.72, 122.22, 98.05, 77.38, 77.06, 76.74, 55.91.

Synthesis of 5-methoxy-7-(1,2,2-triphenylvinyl)-7H-benzo[c]fluoren-7-ol (3)

To a flame-dried 250 mL Schlenk flask, bromotriphenylethylene (1.90 g, 5.76 mmol), magnesium powder (158.74 mg, 6.53 mmol), small amounts of I₂ (9.75 mg, 38.42 µmol) and dry THF (80 mL) were added under argon atmosphere. The mixture was stirred for 5 hours at 60°C, then cooled to 0°C. Subsequently, 5-methoxy-benzofluoren-7(H)-one (2) (1.0 g, 3.84 mmol) was slowly added using a syringe and the mixture was heated to reflux. After allowing it to react overnight and cool to room temperature, a solution of ammonium chloride was added and the mixture was extracted with ethyl acetate (50 mL × 3). The organic extracts were combined and washed with brine and water, then dried with anhydrous MgSO₄, filtered and the solvent was removed under reduced pressure. The crude product was purified by silica gel column chromatography using petroleum ether/ethyl acetate (v/v = 50:1) as an eluent affording 5-methoxy-7-(1,2,2-triphenylvinyl)-7H-benzo[c]fluoren-7-ol **(3)** as a pale-yellow solid (365 mg ,0.689 mmol) in 18% yield. m.p. 183.5 - 184.5 °C

¹H NMR (400 MHz, DMSO- d_6) δ 8.32 – 8.22 (m, 2H), 7.78 – 7.74 (m, 1H), 7.74 – 7.70 (m, 1H), 7.61 – 7.56 (m, 1H), 7.53 – 7.47 (m, 1H), 7.30 – 7.22 (m, 5H), 7.05 (t, J = 7.4 Hz, 2H), 7.00 – 6.95 (m, 1H), 6.94 – 6.85 (m, 4H), 6.84 – 6.79 (m, 1H), 6.65 – 6.59 (m, 1H), 6.54 (t, J = 7.2 Hz, 2H), 6.44 (d, J = 7.4 Hz, 2H), 5.42 (s, 1H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ 155.86, 152.65, 151.16, 144.61, 143.16, 142.49, 141.76, 141.44, 140.59, 132.14, 129.73, 129.57, 128.59, 128.35, 127.71, 127.64, 127.25, 126.85, 126.70, 126.09, 126.05, 125.70, 125.66, 125.30, 125.17, 124.60, 124.16, 122.95, 122.04, 101.94, 82.94, 56.31, 40.64, 40.43, 40.22, 40.01, 39.80, 39.59, 39.38.

HRMS (ESI) calcd. for C₃₈H₂₈O₂ [M+Na]⁺ 539.1982 ; found 539.1984.

Synthesis of 5-methoxy-2',3'-diphenylspiro[benzo[c]fluorene-7,1'-indene] (4)

Under an argon atmosphere, anhydrous $SnCl_2$ (175 mg, 0.39 mmol) was added into a solution of 5-methoxy-7-(1,2,2-triphenylvinyl)-7H-benzo[c]fluoren-7-ol (3) (0.46 mmol) in dry CH_2Cl_2 (20 mL). The mixture was stirred for 3 h at room temperature. The reaction mixture was extracted by ethyl acetate twice (50 mL × 2). The organic extracts were combined, washed with brine and water, dried with anhydrous MgSO₄, filtered, and the solvent was then removed under reduced pressure. The crude product was purified by silica gel column chromatography using petroleum ether/ethyl acetate (v/v = 50:1) as an eluent affording 5-methoxy-2',3'-diphenylspiro[benzo[c]fluorene-7,1'-indene] **(4)** was obtained as a pale-yellow solid (144 mg, 0.29 mmol) in 85% yield. m.p. 186.5 - 187.5 °C

¹H NMR (400 MHz, Chloroform-*d*) δ 8.71 (d, J = 8.4 Hz, 1H), 8.34 (dd, J = 8.4, 1.3 Hz, 1H), 8.25 (d, J = 7.8 Hz, 1H), 7.73 – 7.64 (m, 1H), 7.57 – 7.49 (m, 3H), 7.48 – 7.32 (m, 5H), 7.30 – 7.22 (m, 1H), 7.15 – 7.05 (m, 2H), 7.03 – 6.97 (m, 1H), 6.88 – 6.81 (m, 1H), 6.79 – 6.71 (m, 2H), 6.67 – 6.58 (m, 3H), 6.47 (s, 1H), 3.82 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 156.18, 148.56, 146.27, 145.90, 145.52, 145.49, 143.65, 143.41, 135.54, 134.98, 130.41, 129.92, 129.78, 128.75, 128.68, 127.86, 127.69, 127.66, 127.38, 127.22, 126.93, 126.48, 126.15, 125.76, 124.88, 123.66, 123.35, 123.26, 122.55, 122.11, 120.82, 99.89, 77.44, 77.33, 77.13, 76.81, 70.86, 55.79.

HRMS (ESI) calcd. for C₃₈H₂₈O₂ [M+Na]⁺ 521.1876; found 521.1878 Synthesis of 2',3'-diphenylspiro[benzo[c]fluorene-7,1'-inden]-5-ol (5)

Under an argon atmosphere, 30 mL of dry dichloroethane was added to a dry Schlenk flask (100 mL), followed by the appropriate stoichiometric amount of 5-methoxy-2',3'-diphenylspiro[benzo[c]fluorene-7,1'-indene] (4) (260 mg, 0.52 mmol). A solution of boron

tribromide (653 mg, 2.16 mmol) was then added in an ice bath. The reaction was allowed to proceed for 5 hours at room temperature, followed by the addition of water at 0 °C. The reaction mixture was extracted by ethyl acetate twice (50 mL × 2). The organic extracts were combined, washed with brine and water, dried with anhydrous MgSO₄, filtered, and the solvent was then removed under reduced pressure. The crude product was purified by silica gel column chromatography using petroleum ether/ethyl acetate (v/v = 50:1) as an eluent affording 2',3'-diphenylspiro[benzo[c]fluorene-7,1'-inden]-5-ol **(5)** was obtained as a white solid (220 mg, 0.29 mmol) in 87% yield. m.p. 197.5 - 198.6 °C

¹H NMR (400 MHz, Chloroform-*d*) δ 8.77 (d, J = 8.5 Hz, 1H), 8.30 (d, J = 8.2 Hz, 2H), 7.72 (t, J = 7.7 Hz, 1H), 7.60 – 7.53 (m, 3H), 7.51 – 7.37 (m, 5H), 7.32 – 7.27 (m, 1H), 7.19 – 7.11 (m, 2H), 7.06 – 6.99 (m, 1H), 6.90 – 6.84 (m, 1H), 6.83 – 6.76 (m, 2H), 6.72 – 6.59 (m, 3H), 6.51 (s, 1H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 152.02, 148.49, 146.03, 145.48, 145.22, 143.56, 143.42, 135.51, 134.84, 130.60, 130.30, 129.70, 128.77, 128.65, 127.90, 127.69, 127.64, 127.45, 127.26, 126.94, 126.45, 125.88, 124.87, 123.80, 123.39, 123.11, 122.52, 122.10, 120.77, 104.57, 77.42, 77.10, 76.78, 70.45.

HRMS (ESI) calcd. for $C_{37}H_{24}O [M+Na]^+ 507.1719$; found 507.1723 The synthesis of compounds NP-a:

A solution of 2',3'-diphenylspiro[benzo[c]fluorene-7,1'-inden]-5-ol (5) (3.8 mmol), 1,1diphenylprop-2-yn-1-ol 5a (0.11 g, 0.52 mmol), and two drops of dodecylbenzenesulphonic acid in dry toluene (8 mL) was stirred at 40 °C for 3 h. After cooling down to room temperature, the reaction mixture was extracted by ethyl acetate twice (50 mL × 2). The organic extracts were combined, washed with brine and water, dried with anhydrous MgSO₄, filtered, and the solvent was then removed under reduced pressure. The crude product was purified by silica gel column chromatography using petroleum ether/ethyl acetate (v/v = 50:1) as an eluent affording **NP-a** as a pale-yellow solid in 43%. m.p. 183.5 - 184.6 °C

¹H NMR (400 MHz, Chloroform-*d*) δ 8.70 (d, *J* = 8.5 Hz, 1H), 8.46 (d, *J* = 8.4 Hz, 1H), 8.24 (d, *J* = 7.8 Hz, 1H), 7.65 (t, *J* = 7.6 Hz, 1H), 7.56 (d, *J* = 7.2 Hz, 4H), 7.48 (t, *J* = 7.4 Hz, 2H), 7.44 – 7.28 (m, 8H), 7.17 – 7.07 (m, 3H), 6.90 (t, *J* = 7.4 Hz, 1H), 6.83 (d, *J* = 8.5 Hz, 2H), 6.78 – 6.68 (m, 5H), 6.59 (d, *J* = 7.7 Hz, 2H), 6.43 (d, *J* = 9.8 Hz, 1H), 5.91 (d, *J* = 9.8 Hz, 1H), 3.80 (s, 3H), 3.75 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 157.72, 147.05, 146.75, 145.40, 145.25, 144.07, 142.05, 141.66, 138.89, 136.00, 135.22, 134.36, 133.68, 129.72, 128.84, 128.44, 127.99, 127.65, 127.63, 127.29, 127.26, 126.61, 126.55, 126.48, 126.24, 126.01, 125.71, 125.51, 124.75, 124.52, 124.00, 122.68, 122.27, 121.56, 121.36, 121.18, 120.04, 119.07, 113.13, 112.30, 81.38, 69.31, 54.17, 54.09.

HRMS (ESI) calcd. for C₅₂H₃₄O₃ [M+Na]⁺ 757.2713; found 757.2718. Synthesis of 5-methoxyspiro[benzo[c]fluorene-7,13'-indeno[1,2-l]phenanthrene] (6)

To a flame-dried 50 mL round-bottom flask, Potassium iodide (4.10 mmol) and 5-methoxy-2',3'-diphenylspiro[benzo[c]fluorene-7,1'-indene] (4) (0.802 mmol and cyclohexane (20 mL) were added under air atmosphere. The solution was irradiated with a UV lamp (365 nm, 500 mW) for 4 hours. The crude product was purified by silica gel column chromatography using petroleum ether/ethyl acetate (v/v = 50 : 1) as an eluent affording 5-methoxyspiro[benzo[c]fluorene-7,13'-indeno[1,2-I]phenanthrene] as a pale-yellow solid (310 mg, 0.623 mmol) in 77% yield. m.p. 226.5 - 227.5 °C

¹H NMR (400 MHz, Chloroform-*d*) δ 9.13 (d, *J* = 8.2 Hz, 1H), 8.94 (d, *J* = 8.5 Hz, 1H), 8.89 (d, *J* = 8.3 Hz, 1H), 8.70 (d, *J* = 8.4 Hz, 1H), 8.56 (d, *J* = 7.9 Hz, 1H), 8.50 (d, *J* = 7.9 Hz, 1H), 8.37 (d, *J* = 8.4 Hz, 1H), 7.89 (t, *J* = 7.5 Hz, 1H), 7.81 (t, *J* = 7.8 Hz, 2H), 7.59 (t, *J* = 7.6 Hz, 1H), 7.51 – 7.40 (m, 3H), 7.15 – 7.06 (m, 2H), 7.01 (t, *J* = 7.5 Hz, 1H), 6.93 (d, *J* = 8.2 Hz, 1H), 6.78 – 6.67 (m, 2H), 6.13 (s, 1H), 3.58 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 156.32, 150.51, 148.76, 148.63, 142.97, 142.33, 141.65, 136.90, 131.86, 130.71, 130.57, 129.00, 128.94, 128.42, 127.90, 127.56, 127.47, 127.19, 127.10, 126.95, 126.54, 126.26, 126.19, 125.97, 125.04, 124.90, 124.75, 123.76, 123.73, 123.49, 123.31, 123.22, 123.13, 122.90, 122.38, 99.89, 77.37, 77.26, 77.06, 76.74, 67.22, 55.61.

HRMS (ESI) calcd. for C₅₂H₃₄O₃ [M+Na]⁺ 757.2713; found 757.2718.

Synthesis of spiro[benzo[c]fluorene-7,13'-indeno[1,2-l]phenanthren]-5-ol (7)

5-methoxyspiro[benzo[c]fluorene-7,13'-indeno[1,2-l]phenanthrene] (6) (260 mg, 0.52 mmol) and boron tribromide (653 mg, 2.16 mmol) were combined in a 50 mL round-bottom flask and dissolved in dry dichloroethane (20 mL) under an argon atmosphere. The reaction was allowed to proceed for 5 hours at room temperature, followed by the addition of water at 0°C. The organic phase was combined and washed with brine and water, then dried with anhydrous MgSO₄, filtered and the solvent was removed under reduced pressure. The crude product was purified by silica gel column chromatography using petroleum ether/ethyl acetate (v/v = 50 : 1) as an eluent affording spiro[benzo[c]fluorene-7,13'-indeno[1,2-l]phenanthren]-5-ol (7) as a pale-yellow solid (185 mg,0.38 mmol) in 73% yield. m.p. 197.5 - 198.6 °C

¹H NMR (400 MHz, Chloroform-*d*) δ 9.09 (d, *J* = 8.2 Hz, 1H), 8.93 (d, *J* = 8.6 Hz, 1H), 8.86 (d, *J* = 8.3 Hz, 1H), 8.69 (d, *J* = 8.4 Hz, 1H), 8.53 (d, *J* = 7.9 Hz, 1H), 8.49 (d, *J* = 7.9 Hz, 1H), 8.28 (d, *J* = 8.4 Hz, 1H), 7.87 (t, *J* = 7.6 Hz, 1H), 7.83 – 7.75 (m, 2H), 7.58 (t, *J* = 7.7 Hz, 1H), 7.54 – 7.40 (m, 3H), 7.15 – 6.99 (m, 3H), 6.89 (d, *J* = 8.2 Hz, 1H), 6.75 (d, *J* = 7.5 Hz, 1H), 6.70 (d, *J* = 7.6 Hz, 1H), 6.11 (s, 1H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 156.32, 150.51, 148.76, 148.63, 142.97, 142.33, 141.65, 136.90, 131.86, 130.71, 130.57, 129.00, 128.94, 128.42, 127.90, 127.56, 127.47, 127.19, 127.10, 126.95, 126.54, 126.26, 126.19, 125.97, 125.04, 124.90, 124.75, 123.76, 123.73, 123.49, 123.31, 123.22, 123.13, 122.90, 122.38, 99.89, 77.37, 77.26, 77.06, 76.74, 67.22, 55.61.

HRMS (ESI) calcd. for C₃₇H₂₂O [M+H]⁺ 483.1743; found 483.1705.

Compound NP-b

This compound was prepared according to the same procedure as that of **NP-b**, except that the eluent for column chromatography is petroleum ether/ethyl acetate (v/v = 50 : 1) as an eluent. The product **NP-b** is a pale-yellow solid in 46% yield. m.p. 179.5 - 180.6 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 9.44 (d, J = 8.0 Hz, 1H), 9.06 (d, J = 8.2 Hz, 1H), 8.91 (d, J = 8.6 Hz, 1H), 8.84 (d, J = 8.3 Hz, 1H), 8.66 (d, J = 8.3 Hz, 1H), 8.52 – 8.45 (m, 2H), 8.27 (d, J = 8.4 Hz, 1H), 7.87 – 7.81 (m, 1H), 7.81 – 7.74 (m, 2H), 7.56 (t, J = 7.8 Hz, 1H), 7.49 – 7.44 (m, 2H), 7.42 – 7.38 (m, 2H), 7.28 (d, J = 8.5 Hz, 1H), 7.20 (s, 1H), 7.09 – 7.04 (m, 2H), 7.02 – 6.98 (m, 1H), 6.93 (d, J = 8.3 Hz, 2H), 6.89 – 6.85 (m, 3H), 6.72 (d, J = 7.8 Hz, 1H), 6.67 (d, J = 7.6 Hz, 1H), 6.46 (d, J = 8.0 Hz, 1H), 6.09 (s, 1H), 3.85 (s, 3H), 3.81 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 193.78, 162.24, 161.70, 160.79, 152.27, 150.38, 148.62, 148.50, 142.96, 142.28, 141.46, 136.81, 132.49, 132.44, 131.79, 130.79, 130.68, 130.60, 129.31, 129.20, 128.90, 128.38, 128.29, 128.11, 127.98, 127.62, 127.55, 127.19, 127.14, 126.93, 126.57, 126.29, 126.09, 125.43, 124.99, 124.96, 124.85, 124.82, 124.68, 123.85, 123.75, 123.48, 123.34, 123.22, 123.11, 122.94, 122.39, 77.38, 77.06, 76.75, 66.86, 55.45, 55.43.

HRMS (ESI) Calcd. for C₅₄H₃₆O₃ [M+H]⁺ 733.2738; found 733.2719.

2. NMR Spectra

Fig. S1 ¹H NMR spectrum (400 MHz, CDCl₃, 298 K) of 5-methoxy-benzofluoren-7(H)-one

Fig. S2 ¹³C NMR spectrum (101 MHz, CDCl₃, 298 K) of 5-methoxy-benzofluoren-7(*H*)-one.

Fig. S3 ¹H NMR spectrum (400 MHz, DMSO-*d*₆, 298 K) of 5-methoxy-7-(1,2,2-triphenylvinyl)-7*H*-benzo[c]fluoren-7-ol

Fig. S4 ¹³C NMR spectrum (101 MHz, DMSO- d_6 , 298 K) of 5-methoxy-7-(1,2,2-triphenylvinyl)-7*H*-benzo[c]fluoren-7-ol

Fig. S5 ¹H NMR spectrum (400 MHz, $CDCl_3$, 298 K) of 5-methoxy-2',3'-diphenylspiro[benzo [c]fluorene-7,1'-indene]

Fig. S6 13 C NMR spectrum (101 MHz, CDCl₃, 298 K) of 5-methoxy-2',3'-diphenylspiro[benzo [c]fluorene-7,1'-indene]

Fig. S7 ¹H NMR spectrum (400 MHz, $CDCl_3$, 298 K) of 2',3'-diphenylspiro[benzo[c]fluorene-7,1'-inden]-5-ol

Fig. S8 ^{13}C NMR spectrum (101 MHz, CDCl_3, 298 K) of 2',3'-diphenylspiro[benzo[c]fluorene-7,1'-inden]-5-ol

Fig. S9 ¹H NMR spectrum (400 MHz, $CDCl_3$, 298 K) of 5-methoxyspiro[benzo[c]fluorene-7,13'-indeno[1,2-l]phenanthrene]

Fig. S10 ¹³C NMR spectrum (101 MHz, CDCl₃, 298 K) of 5-methoxyspiro[benzo[c]fluorene-7,13'-indeno[1,2-l]phenanthrene]

Fig. S11 ¹H NMR spectrum (400 MHz, CDCl₃, 298 K) of spiro[benzo[c]fluorene-7,13'-indeno[1,2-l] phenanthren]-5-ol

Fig. S12 ¹³C NMR spectrum (101 MHz, CDCl₃, 298 K) of spiro[benzo[c]fluorene-7,13'-indeno[1,2-l] phenanthren]-5-ol

Fig. S13 ¹H NMR spectrum (400 MHz, CDCl₃, 298 K) of NP

Fig. S14 ¹³C NMR spectrum (101 MHz, CDCl₃, 298 K) of NP

Fig. S15 ¹H NMR spectrum (400 MHz, CDCl₃, 298 K) of NP-a

Fig. S16 $^{\rm 13}{\rm C}$ NMR spectrum (101 MHz, CDCl3, 298 K) of NP-a

Fig. S17 ^1H NMR spectrum (400 MHz, CDCl₃, 298 K) of NP-b

Fig. S18 ¹³C NMR spectrum (101 MHz, CDCl₃, 298 K) of NP-b

3. MS Spectra

Fig. S19 HR-ESI-TOF-MS of 5-methoxy-7-(1,2,2-triphenylvinyl)-7H-benzo[c]fluoren-7-ol

Fig. S20 HR-ESI-TOF-MS of 5-methoxy-2',3'-diphenylspiro[benzo[c]fluorene-7,1'-indene]

Fig. S21 HR-ESI-TOF-MS of 2',3'-diphenylspiro[benzo[c]fluorene-7,1'-inden]-5-ol

Fig. S22 HR-ESI-TOF-MS of 5-methoxyspiro[benzo[c]fluorene-7,13'-indeno[1,2-l]phenanthrene]

Fig. S23 HR-ESI-TOF-MS of spiro[benzo[c]fluorene-7,13'-indeno[1,2-I]phenanthren]-5-ol

Fig. S24 HR-ESI-TOF-MS of NP-a

Fig. S25 HR-ESI-TOF-MS of NP-b

4. Optical Properties of NPs in the solution

Fig. S26 UV-Vis absorption spectra of **NP-a** in chloroform with various concentrations upon irradiation with UV light (365 nm, 200 mW) for 50 seconds

Fig. S27 Color change of NP-a and NP-b in chloroform (8.0×10^{-5} M) upon UV irradiation (365nm, 260mW /cm²) to PSS

Fig. S28 Photochromic curves over time at λ_{max} of NP-b and NP in chloroform (8 × 10⁻⁵ mol/L) upon UV irradiation(365nm, 260mW /cm²); (b) Thermal fading curves of NP-a, NP-b and NP in chloroform (8×10⁻⁵ mol/L) at 298 K

Fig. S29 Thermal fading curves with kinetics parameters of (a) NP-a, (b) NP-b and (c) NP in chloroform (8×10^{-5} mol/L) at 298 K

Solvent	λ _{max} (nm)	A _{max}	ε/dm³mol ⁻¹ cm ⁻¹
Toluene	551	0.1694	3.39×10 ³
Acetone	553	0.2937	5.87×10 ³
MeCN	553	0.2405	4.81×10 ³
Chlorofor m	562	0.4505	9.01×10 ³
THF	551	0.3863	7.73×10 ³

Table S1 Photophysical data of **NP-a** in various solvents (5×10^{-5} mol/L) upon irradiation with UV light (365 nm, 200 mW) for 50 s

5. Optical Properties of PMMA Film Doped with NP-b

Fig. S30 (a) UV-Vis absorption spectra of the PMMA doped with **NP-b** without UV irradiation; (b) UV-Vis absorption spectra of the PMMA doped with **NP-b** upon UV irradiation (365nm, 260mW /cm²) to PSS; (c) Photochromic curve over time at λ_{max} of the PMMA doped with **NP-b**; (d) Thermal fading curve of the PMMA doped with **NP-b** at 298 K.

Fig. S31 Absorbance values at λ_{max} of the process of color generation and decoloration of the PMMA film doped with NP-b at room temperature

6. X-ray Crystallographic Analysis.

Single crystals of **NP-a** were grown by slowly diffusing *n*-hexane into the chloroform solution.

Table S2 X-ray crystal structure refinement data for NP-a. Identification code NP-a **Empirical formula** $C_{54}H_{38}O_3$ 734.84 Formula weight Temperature/K 302(2) Crystal system triclinic Space group P-1 a/Å 11.6774(3) b/Å 12.0992(3) c/Å 14.8445(4) α/° 88.277(2) β/° 72.382(2) γ/° 71.540(2) Volume/Å³ 1891.08(9) Ζ 2 Pcalc g/cm³ 1.291 μ /mm-1 0.613 F(000) 772.0 Radiation CuK_{α} ($\lambda = 1.54184$) 20 range for data 7.724 to 153.356 collection/° $-14 \le h \le 14, -15 \le k \le 15, -18 \le$ Index ranges |≤15 **Reflections collected** 24115 7655 [R_{int} = 0.0264, R_{sigma} = Independent reflections 0.0253] Data/restraints/parame 7655/0/517 ters Goodness-of-fit on F2 1.059 Final R indexes [I>=2o $R_1 = 0.0383$, $wR_2 = 0.1023$ (I)] Final R indexes [all data] $R_1 = 0.0416$, $wR_2 = 0.1049$ Largest diff. peak/hole / 0.43/-0.28 e Å-3

7. References

J. Momoda, S. Izumi and Y. Yokoyama, *Dyes Pigments*, 2015, **119**, 95–107.
M.-H. Kim, M. Saleem, J.-S. Seo, C.-S. Choi and K. H. Lee, *Spectrochim. Acta. A. Mol. Biomol. Spectrosc.*, 2015, **136**, 1291–1297.