Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supplementary Information

Co@Ir Core-shell Nanochains Aerogels for Hydrogen Evolution Reaction and Oxygen Evolution Reaction in Alkaline Media

Jiacheng Chen,^{abc} Zihao Xie,^{abc} Yujun Tang,^c Zhenghua Tang,^{*c} and Xiufang Wang^{*ab} ^a School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China, Email: x_f_wang@163.com

^b Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, China

^c New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China, Email: zhht@scut.edu.cn

Supplementary Tables

Table S1. The HER activity comparison between the Ir_7Co_3 aerogel and recently reported top-level aerogel electrocatalysts in 1.0 M KOH.

Catalyst	$\eta_{10}(mV)$	Tafel slope (mV·dec ⁻¹)	Reference
Ir ₇ Co ₃ aerogel	20.4	28.87	This work
Ir ₅ Co ₅ aerogel	73.0	118.77	This work
Ir ₃ Co ₇ aerogel	206.8	237	This work
Ir aerogel	34.5	57.81	This work
CoNiFe/MnO@CNTs	122	149	1
Ruaerogel	272	41.6	2
NiSe ₂ -CoSe ₂	65	57.54	3
Ru ₉₈ Ir ₂ -350	26	8.3	4
P-CoCu	142	101.75	5
RuNi7FeOx(OH)y @NCA	99	61.1	6

Catalyst	$R_{S}\left(\Omega ight)$	$R_{S}+R_{CT}\left(\Omega ight)$	$R_{CT}(\Omega)$
Ir7Co3 aerogel	5.4	25.2	19.8
Ir ₅ Co ₅ aerogel	6.6	83.4	76.8
Ir ₃ Co ₇ aerogel	8.2	135.5	127.3
Ir aerogel	5.9	39.4	33.5
Co aerogel	5.8	488.2	482.4

Table S2. The relevant data of EIS spectra for HER.

Catalyst	$\eta_{10}(mV)$	Tafel slope (mV·dec ⁻¹)	Reference
Ir ₇ Co ₃ aerogel	269	31	This work
Ir ₅ Co ₅ aerogel	288	52.4	This work
Ir ₃ Co ₇ aerogel	341	85.8	This work
Ir aerogel	326	62.3	This work
CoNiFe/MnO@CNTs	275	63	1
Ru _{0.7} Co _{0.3} aerogel	272	41.6	2
RuNi ₇ FeO _x (OH) _y @NCA	278	102.7	6
NiFe ₂ O _x Aero-300-Ar	356	57	7
Ni-NCN/CoFe-LDH	280	42	8
NSCA/FeCo	335	60	9
Ni ₉₄ Fe ₆ aerogel	380	-	10
Ir ₃ Cu MAs	298	41	11
NiCoMn-LDHs	340(η50)	87	12

Table S3. The OER activity comparison between the Ir_7Co_3 aerogel and recently reported top-level aerogel electrocatalysts in 1.0 M KOH.

Catalyst	$R_{s}\left(\Omega\right)$	$R_{s}\text{+}R_{ct}\left(\Omega\right)$	$R_{ct}\left(\Omega ight)$
Ir ₇ Co ₃ aerogel	5.6	42.0	36.4
Ir5Co5 aerogel	5.6	81.4	75.8
Ir ₃ Co ₇ aerogel	5.7	163.3	157.6
Ir aerogel	6.0	119.5	113.5
Co aerogel	5.1	241.6	236.5

Table S4. The relevant data of EIS spectra for OER.

Supplementary Figures

Figure S1. Optical photographs of the Ir₇Co₃ aerogel (a) after gelation and (b) after freeze-drying.

Figure S2. Typical SEM images of the (a-b) Ir aerogel, (c-d) Ir₅Co₅ aerogel, (e-f) Ir₃Co₇ aerogel, (g-h) Co aerogel.

Figure S3. Typical TEM and HRTEM images of the (a-b) Ir and (c-d) Co aerogel.

Figure S4. LSV polarization curves of the Ir, Ir_7Co_3 , Ir_5Co_5 , Ir_3Co_7 , Co aerogels and Pt/C catalyst towards HER without iR compensation.

Figure S5. LSV polarization curves of the Ir, Ir₇Co₃, Ir₅Co₅, Ir₃Co₇, Co aerogels and RuO₂ catalyst towards OER without iR compensation.

Figure S6. Cyclic voltammograms of the Ir_7Co_3 aerogel in the range from 0.525 to 0.625 V (vs. Hg/ HgO) at different scan rates.

Figure S7. Cyclic voltammograms of the Ir_5Co_5 aerogel in the range from 0.525 to 0.625 V (vs. Hg/ HgO) at different scan rates.

Figure S8. Cyclic voltammograms of the Ir_3Co_7 aerogel in the range from 0.525 to 0.625 V (vs. Hg/ HgO) at different scan rates.

Figure S9. Cyclic voltammograms of the Ir aerogel in the potential range from 0.525 to 0.625 V (vs. Hg/ HgO) at different scan rates.

Figure S10. Cyclic voltammograms of the Ir_7Co_3 aerogel in the potential range from 1.225 to 1.325 V (vs. Hg/ HgO) at different scan rates.

Figure S11. Cyclic voltammograms of the Ir_5Co_5 aerogel in the potential range from 1.225 to 1.325 V (vs. Hg/ HgO) at different scan rates.

Figure S12. Cyclic voltammograms of the Ir_3Co_7 aerogel in the potential range from 1.225 to 1.325 V (vs. Hg/ HgO) at different scan rates.

Figure S13. Cyclic voltammograms of the Ir aerogel in the potential range from 1.225 to 1.325 V (vs. Hg/ HgO) at different scan rates.

Figure S14. The LSV polarization curves before and after the stability test.

References

- 1. C. Zhou, X. Han, F. Zhu, X. Zhang, Y. Lu, J. Lang, X. Cao and H. Gu, *Int. J. Hydrogen Energy*, 2022, **47**, 27775-27786.
- Z. Lin, S. Liu, Y. Liu, Z. Liu, S. Zhang, X. Zhang, Y. Tian and Z. Tang, *J. Power Sources*, 2021, **514**, 230600.
- 3. H. Liu, F. Yang, F. Chen, S. Che, N. Chen, C. Xu, N. Wu, W. Wei and Y. Li, *Mater. Chem. Front.*, 2023, **7**, 1365-1373.
- 4. S. Yan, X. Chen, W. Li, M. Zhong, J. Xu, M. Xu, C. Wang, N. Pinna and X. Lu, *Adv. Sci.*, 2024, **11**, 2307061.
- H. Liu, F. Yang, Z. Xu, X. Yan, F. Chen, C. Xu, S. Che and Y. Li, *Electrochim. Acta*, 2022, 430, 141075.
- S. Huang, J. Lu, X. Wu, H. Zhu, X. Shen, S. Cui and X. Chen, *Appl. Catal. A- Gen.*, 2023, 664, 230600.
- C. N. Chervin, P. A. DeSario, J. F. Parker, E. S. Nelson, B. W. Miller, D. R. Rolison and J. W. Long, *ChemElectroChem*, 2016, 3, 1369-1375.
- J. Zhang, L. Hao, Z. Chen, Y. Gao, H. Wang and Y. Zhang, J. Colloid Interface Sci., 2023, 650, 816-824.
- Y. Zhang, X. Zhang, Y. Li, J. Wang, S. Kawi and Q. Zhong, *Nano Res.*, 2023, 16, 6870-6880.
- W. Moschkowitsch, N. Zion, H. C. Honig, N. Levy, D. A. Cullen and L. Elbaz, *ACS Catal.*, 2022, 12, 12162-12169.
- Q. Shi, C. Zhu, H. Zhong, D. Su, N. Li, M. H. Engelhard, H. Xia, Q. Zhang, S. Feng, S. P. Beckman, D. Du and Y. Lin, *ACS Energy Lett.*, 2018, 3, 2038-2044.
- 12. B. Liu, M. Zhang, Y. Wang, Z. Chen and K. Yan, J. Alloys Compd., 2021, 852, 156949.