Supporting Information

for

Design and synthesis of novel *N*-benzyl-2,5-dihydro-1*H*-pyrrole linked benzopyrimidines conjugates as antimicrobial agents: study combining *in vitro* and *in silico*

Sarra Chortani,^{ab} Sami Ben Salah,^a Amel Hajlaoui,^b Mabrouk Horchani,^b Hayet Edziri,^c Adam Daïch,^a.Hichem Ben Jannet,^b Anis Romdhane,^b Ata Martin Lawson,*^a and Mohamed Othman*^a

^bLaboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Faculty of Science of Monastir, University of Monastir, Avenue of Environment, 5019 Monastir, Tunisia

^cLaboratory of Transmissible Diseases and Biologically Active Substances, Faculty of Pharmacy, 5000 Monastir, Tunisia

E-mail: mohamed.othman@univ-lehavre.fr; *ORCID Mohamed Othman: 0000-0002-8379-5704

^a Normandie Univ., UNILEHAVRE, URCOM, 76600 Le Havre, France. UR 3221, INC3M, FR-CNRS 3038 UFR ST, BP: 1123, 25 rue Philippe Lebon, F-76063 Le Havre Cedex, France

Table of contents

I.	General remarks	S.2
II.	General procedure for the synthesis of 2-aryl-benzopyrimidinone 2	S.2
III.	General procedure for propargylation of 2-aryl-benzopyrimidinone 2	S.6
IV.	General procedure for the synthesis of the cyclo-adducts 5a-h and 6a-h	S.13
V.	Copies of ¹ H and ¹³ C NMR spectra for all new compounds	S.23

I. General remarks

All reactions were monitored by TLC using aluminum sheets of Merck silica gel 60 F254, 0.2 mm. Melting temperatures were determined on an electrothermal 9002 apparatus and were reported uncorrected. All purifications were performed using an automated purification system Büchi C-815 puriflash, using 200-800 nm UV scan and ELSD as a detector. NMR spectra were recorded on a Bruker AC-300 spectrometer at 300 MHz (¹H) and 75 MHz (¹³C). Chemical shifts are reported in parts per million (δ).

Chromatographic separations were achieved on silica gel columns (Kieselgel 60, 40–63 μ m, Merck) typically using a cyclohexane/ethyl acetate eluent system. In all cases, distilled solvents were used as eluents for column chromatography.

Solvents (CH₃CN, DMF, THF) were distilled before use, taking care to exclude moisture. All reactions were carried out under an inert argon atmosphere. All glass apparatus was ovendried and cooled under vacuum before use. The infrared spectra (IR) were recorded on a Perkin-Elmer FT-IR Paragon 1000 spectrometer.

Mass spectra (GC-MS) were obtained on a ThermoFinniganAutomass III spectrometer coupled with a gas chromatograph Trace GC 2000. High-resolution mass spectra (HRMS) were measured on an Agilent 6530 Q-Tof MS system.

II. General procedure for the synthesis of 2-aryl-benzopyrimidinone 2

To a mixture of 2-aminobenzamide 1 (5 mmol) and various arylaldehydes (5 mmol) in dry acetonitrile (50 mL), molecular iodine (5 mmol) was added. After the reaction was completed, the mixture was cooled to room temperature. A solution of sodium thiosulphate (5%) was added and the resulting solid was filtered off and washed with water. The crude product was recrystallized from ethanol.

2a: 2-phenylbenzopyrimidin-4(3H)-one

White solid; yield: 55%; mp: 250-252 °C; IR (ATR, cm⁻¹) *v*: 1660.82 (C=O); R_f (cyclohexane/EtOAc: 6/4) = 0.5. ¹H NMR (300MHz,DMSO- d_6): δ (ppm) = 7.56 (m, 4H, H_{arom}), 7.74 (d, 1H, H₈, J = 7.5 Hz), 7.82 (td, 1H, H₇, J = 8.1Hz, J = 1.5 Hz), 8.18 (m, 3H, H_{arom}), 12.47 (s, 1H, NH). ¹³C NMR (75 MHz, DMSO- d_6): δ (ppm) = 121.9 (C_{5a}), 125.8, (C_{arom}), 126.4 (C_{arom}), 127.3 (C_{arom}), 127.7 (2C_{arom}), 128.5 (2C_{arom}), 131.2 (C_{arom}), 132.7 (C_{arom}), 134.4 (C₁·), 148.6 (C_{8a}), 152.5 (C₂), 162.2 (C₄). ES-HRMS [M+H]⁺ calcd. (C₁₄H₁₁N₂O)⁺: 223.0871, found: 223.0880.

2b: 2-(p-tolyl)benzopyrimidin-4(3H)-one

White solid; yield: 82%; mp: 253-255 °C; IR (ATR, cm⁻¹) *v*: 1656.30 (C=O); R_f (cyclohexane/EtOAc: 6/4) = 0.48. ¹H NMR (300 MHz, DMSO- d_6): δ (ppm) = 2.39 (s, 3H, H₇), 7.34 (d, 2H, H_{3',5'}, *J* = 8.1 Hz), 7.48 (t, 1H, H₆, *J* = 7.9 Hz), 7.71 (d, 1H, H₈, *J* = 7.9 Hz), 7.80 (t, 1H, H₇, *J* = 7.6 Hz), 8.09 (d, 2H, H_{2',6'}, *J* = 8.2 Hz), 8.14 (d, 1H, H₅, *J* = 6.9 Hz), 12.44 (s, 1H, NH). ¹³C NMR (75 MHz, DMSO- d_6): δ (ppm) = 21.4 (C_{7'}), 121.3 (C_{5a}), 126.3 (C_{arom}), 126.8 (C_{arom}), 127.8 (C_{arom}), 128.1 (2C_{arom}), 129.6 (2C_{arom}), 130.1 (C_{1'}), 135.0 (C_{arom}), 141.9 (C_{4'}), 149.2 (C_{8a}), 152.7 (C₂), 162.8 (C₄). ES-HRMS [M+H]⁺ calcd. (C₁₅H₁₃N₂O)⁺: 237.0983, found: 237.1034.

White solid; yield: 60%; mp: 240-242 °C; IR (ATR, cm⁻¹) v: 1660.01 (C=O); R_f (cyclohexane/EtOAc: 6/4) = 0.45). ¹H NMR(300MHz, DMSO- d_6) : δ (ppm) = 3.77 (s, 3H, H₁·), 7.00 (d, 2H, H_{3',5'}, J = 8.7 Hz), 7.40 (t, 1H, H₆, J = 7.8 Hz), 7.60 (d, 1H, H₈, J = 8.1 Hz), 7.72 (td, 1H, H₇, J = 8.1 Hz, J = 1.2 Hz), 8.06 (dd, 1H, H₅, J = 8.1 Hz, J = 0.9 Hz), 8.12 (d, 2H, H_{2',6'}, J = 8.7 Hz), 12.26 (s, 1H, NH). ¹³CNMR (75 MHz, DMSO- d_6): δ (ppm) = 55.4 (C₇·), 113.9 (2C_{arom}), 120.6(C_{arom}), 124.8(C₁·), 125.7(C_{arom}), 126.0 (C_{arom}), 127.1 (C_{arom}), 129.4 (2C_{arom}), 134.4 (C_{arom}), 148.8 (C_{8a}), 151.9 (C₂), 161.9 (C₄), 162.3 (C₄). ES-HRMS [M+H]⁺ calcd. (C₁₅H₁₃N₂O₂)⁺: 253.0977, found: 253.0981.

2d: 2-(3,4-dimethoxyphenyl)benzopyrimidin-4(3H)-one

White solid; yield: 70%; mp: 244-246 °C; IR (ATR, cm⁻¹) *v*: 1572.33 (C=O); R_f (cyclohexane/EtOAc: 6/4) = 0.51.¹H NMR(300 MHz, DMSO- d_6): δ (ppm) = 3.85 (s, 3H, OCH₃), 3.89 (s, 3H, OCH₃), 7.10 (d, 1H, H₅, *J* = 8.6 Hz), 7.46 (t, 1H, H₆, *J* = 7.9 Hz), 7.70 (d, 1H, H_{arom}, *J* = 7.8 Hz), 7.79-7.89 (m, 3H, H_{arom}), 8.12 (d, 1H, H₅, *J* = 7.8 Hz), 12.44 (s, 1H, NH). ¹³C NMR (75 MHz, DMSO- d_6): δ (ppm) = 56.1 (2OCH₃), 111.1 (C_{arom}), 111.8 (C_{arom}), 121.1 (C_{5a}), 121.6 (C_{arom}), 125.2 (C₁), 126.3 (C_{arom}), 126.6 (C_{arom}), 127.8 (C_{arom}), 135.0 (C_{arom}), 149.0 (C_{8a}), 149.4 (C₃), 152.0 (C₄), 152.3 (C₂), 162.8(C₄). ES-HRMS [M+H]⁺ calcd. (C₁₆H₁₅N₂O₃)⁺: 283.1038, found: 283.1092.

2e: 2-(4-(tert-butyl)phenyl)benzopyrimidin-4(3H)-one

White solid; yield: 78%; mp: 222-224°C; IR (ATR, cm⁻¹) v: 1572.33 (C=O); R_f (cyclohexane/EtOAc: 6/4) = 0.50.¹H NMR (300 MHz, DMSO- d_6): δ (ppm) = 1.32 (s, 9H, H₁₅), 7.48-7.57 (m, 3H, H_{arom}), 7.72 (d, 1H, H₈, *J* = 7.7 Hz), 7.81 (t, 1H, H₇, *J* = 7.6 Hz), 8.13-8.17 (m, 3H, H_{arom}), 12.48 (s, 1H, NH). ¹³C NMR (75 MHz, DMSO- d_6): δ (ppm) = 31.3 (C₈·), 35.1 (C₇·), 121.4 (C_{5a}), 125.9 (2C_{arom}), 126.3 (C_{arom}), 126.8 (C_{arom}), 127.8 (C_{arom}), 128.0 (2C_{arom}), 130.4 (C₁·), 135.0 (C_{arom}), 149.4 (C_{8a}), 152.7 (C₂), 154.8 (C₄·), 162.8 (C₄). ES-HRMS [M+H]⁺ calcd. (C₁₈H₁₉N₂O)⁺: 279.1453, found: 279.1503.

2f: 2-(4-chlorophenyl)benzopyrimidinone

White solid; yield: 68%; mp>300 °C; IR (ATR, cm⁻¹) v: 1665.72 (C=O); R_f (cyclohexane/EtOAc: 6/4) = 0.60. ¹H NMR (300 MHz, DMSO- d_6): δ (ppm) = 7.75 (m, 5H, H_{arom}), 8.19 (d, 3H, H_{arom}, J = 6.6 Hz), 12.53 (s, 1H, NH). ¹³C NMR (75 MHz, DMSO- d_6): δ (ppm) = 121.0 (C_{5a}), 125.8 (C_{arom}), 126.6 (C_{arom}), 127.3 (C_{arom}), 128.6 (2C_{arom}), 129.5 (2C_{arom}), 131.6 (C₁·), 134.5 (C_{arom}), 136.2 (C₄·), 148.5 (C_{8a}), 151.5 (C₂), 162.2 (C₄). ES-HRMS [M+H]⁺ calcd. (C₁₄H₁₀ClN₂O)⁺: 257.0482, found: 257.0491.

White solid; yield: 80%, mp>300 °C; IR (ATR, cm⁻¹) v: 1661.33 (C=O). R_f (cyclohexane/EtOAc: 6/4) = 0.60. ¹H NMR(300 MHz, DMSO- d_6): δ (ppm) = 7.37-7.43 (m, 2H, H_{arom}), 7.50 (t, 1H, H₆, J = 8.1 Hz), 7.73 (d, 1H, H₈, J = 7.6 Hz), 7.82-7.88 (m, 1H, H₇), 8.14 (dd, 1H, H₅, J_I = 7.6 Hz, J_2 = 1.3 Hz), 8.24-8.28 (m, 2H, H_{arom}, J = 7.6 Hz), 12.59 (s, 1H, NH). ¹³C NMR (75 MHz, DMSO- d_6): δ (ppm) = 116.0 (d, J = 22.0 Hz, C₃· + C₅·),121.3 (C_{5a}), 126.3 (C_{arom}), 127.0 (C_{arom}), 127.9 (C_{arom}), 129.7 (d, J = 3.0 Hz, C₁·), 130.8 (d, J = 9.0 Hz, C₂· + C₆·), 135.1 (C_{arom}), 149.0 (C_{8a}), 151.9 (C₂), 162.7 (C₄), 164.5 (d, J = 249.6 Hz, C₄·). ES-HRMS [M+H]⁺ calcd. (C₁₄H₁₀FN₂O)⁺: 241.0724, found: 241.0784.

White solid; yield: 72%; mp>300 °C; IR (ATR, cm⁻¹) v: 1670.98 (C=O); R_f (cyclohexane/EtOAc: 6/4) = 0.60. ¹H NMR (300 MHz, DMSO- d_6): δ (ppm) = 7.50-7.58 (m, 2H, H_{arom}), 7.56-7.89 (m, 3H, H_{arom}), 8.15-8.22 (m, 2H, H_{arom}), 8.39 (t, 1H, H₁₀, J = 1.7 Hz), 12.64 (s, 1H, NH). ¹³C NMR (75 MHz, DMSO- d_6): δ (ppm) = 113.3 (C_{arom}), 115.2 (C_{arom}), 120.8 (C_{5a}), 123.2 (C₃·), 126.3 (C_{arom}), 127.3 (C_{arom}), 127.5 (C_{arom}), 129.6 (C_{arom}), 130.8 (C₁·), 131.2(C_{arom}), 133.4 (C_{arom}), 148.7 (C_{8a}), 152.3 (C₂), 161.0 (C₄). ES-HRMS [M+H]⁺ calcd. (C₁₄H₁₀BrN₂O)⁺: 300.9934, found: 300.9994.

III. General procedure for N-propargylation of 2-aryl-benzopyrimidinone 2

2-aryl-benzopyrimidinone 2 (1 mmol) was dissolved in dry DMF (15 mL) and (2 eq.) of sodium borohydride was added. The reaction mixture was stirred at room temperature for 1 h. Then, propargyl bromide (1.5 eq.) was added dropwise. The reaction was performed for 24 h at room temperature. The mixture was diluted with water. The precipitate formed was filtered, washed with water, dried and purified by silica gel flash column chromatography to afford to dialkylated products **3** and **4**.

White solid; yield: 58%; mp: 178-180 °C; IR (ATR, cm⁻¹) v: 2121.50 (C=C), 3247.71 (=C–H), 1571.23 (C=O); R_f (cyclohexane/ EtOAc: 9/1) = 0.5. ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 2.36 (s, 1H, H₁₇), 4.70 (d, 2H, H₁₅, *J* = 1.4 Hz), 7.50-7.65 (m, 4H, H_{arom}), 7.70-7.84 (m, 4H, H_{arom}), 8.27 (d, 1H, H₅, *J* = 7.9 Hz). ¹³C NMR(75 MHz, CDCl₃): δ (ppm) = 36.3 (C₁₅), 72.6 (C₁₇), 78.3 (C₁₆), 120.6 (C_{5a}), 126.9 (C_{arom}), 127.3 (C_{arom}), 127.6 (C_{arom}), 128.1 (2C_{arom}), 128.9 (2C_{arom}), 130.4 (C_{arom}), 134.7 (C_{arom}), 134.8 (C₉), 147.1 (C_{8a}), 155.4 (C₂), 161.6 (C₄). ES-HRMS [M+H]⁺ calcd. (C₁₇H₁₃N₂O)⁺: 261.0983, found: 261.1040.

White solid; yield: 36%; mp: 166-168 °C; IR (ATR, cm⁻¹) v: 2121.70 (C=C), 3247.09 (=C–H), 1577.02 (C=O); R_f (cyclohexane/ EtOAc: 9/1) = 0.5. ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 2.35-2.37 (m, 1H, H₁₇), 2.46 (s, 3H, H₁₈), 4.69 (d, 2H, H₁₅, *J* = 2.3 Hz), 7.34 (d, 2H, H_{arom}, *J* = 7.8 Hz), 7.49-7.55 (m, 1H, H_{arom}), 7.63-7.67 (m, 2H, H_{arom}), 7.74-7.81 (m, 2H, H_{arom}), 8.35 (d, 1H, H₅, *J* = 8.3 Hz). ¹³C NMR(75 MHz,CDCl₃): δ (ppm) = 21.5 (C₁₈), 36.4 (C₁₅), 72.6 (C₁₇), 78.5 (C₁₆), 120.5 (C_{5a}), 126.9 (C_{arom}), 127.1 (C_{arom}), 127.6 (C_{arom}), 128.0 (2C_{arom}), 129.5 (2C_{arom}), 131.9 (C₉), 134.6 (C_{arom}), 140.6 (C₁₂), 147.2 (C_{8a}), 155.6 (C₂), 161.7 (C₄). ES-HRMS [M+H]⁺ calcd.(C₁₈H₁₅N₂O)⁺: 275.1140, found: 275.1194.

3c: 2-(4-methoxyphenyl)-3-(prop-2-yn-1-yl)benzopyrimidin-4(3H)-one

White solid; yield: 55%; mp: 234-236 °C; IR (ATR, cm-1) *v*: 2119.95 (C=C), 3245.43 (=C–H), 1605.21 (C=O); R_f (cyclohexane/ EtOAc: 9/1) = 0.5. ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 2.38 (s, 1H, H₁₇), 3.91 (s, 3H, OCH₃), 4,72 (d, 2H, H₁₅, *J* = 1.8 Hz), 7.06 (d, 2H, H_{arom}, *J* = 8.6 Hz), 7.52 (t, 1H, H₆, *J* = 6.8 Hz), 7.73-7.82 (m, 4H, H_{arom}), 8.36 (d, 1H, H₅, *J* = 8.3 Hz). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 36.5 (C₁₅), 55.5 (OCH₃), 72.6 (C₁₇), 78.6 (C₁₆), 114.2 (2C_{arom}), 120.5 (C_{5a}), 126.9 (C_{arom}), 127.0 (C₉), 127.1 (C_{arom}), 127.5 (C_{arom}),129.8 (2C_{arom}), 134.6 (C_{arom}), 147.2 (C_{8a}), 155.4 (C₂), 161.2 (C₁₂), 161.9 (C₄). ES-HRMS [M+H]⁺ calcd. (C₁₈H₁₅N₂O₂)⁺: 291.1089, found: 291.1144.

3d: 2-(3,4-dimethoxyphenyl)-3-(prop-2-yn-1-yl)benzopyrimidin-4(3H)-one

White solid; yield: 32%; mp: 157-159 °C; IR (ATR, cm⁻¹) v: 2121.49 (C=C), 3221.04 (=C–H), 1577.16 (C=O); R_f (cyclohexane/ EtOAc: 9/1) = 0.5. ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 2.40 (t, 1H, H₁₇, *J* = 2.2 Hz), 3.98 (s, 6H, 2OCH₃), 4.72 (d, 2H, H₁₅, *J* = 2.2 Hz), 7.03 (d, 1H, H_{arom}, *J* = 8.2 Hz), 7.35-7.39 (m, 2H, H_{arom}), 7.50-7.55 (m, 1H, H_{arom}), 7.75-7.82 (m, 2H, H_{arom}), 8.36 (d, 1H, H₅, *J* = 8.1 Hz). ¹³C NMR(75 MHz, CDCl₃): δ (ppm) = 36.7 (C₁₅), 56.0 (OCH₃), 56.1 (OCH₃), 72.6 (C₁₇), 79.0 (C₁₆), 111.1 (C_{arom}), 111.2 (C_{arom}), 120.5 (C_{5a}), 121.3 (C_{arom}), 126.9 (C_{arom}), 127.1 (C₉), 127.2 (C_{arom}), 127.5 (C_{arom}), 134.7 (C_{arom}), 147.1 (C_{8a}), 148.9 (C₁₁),

150.7 (C₁₂), 155.3 (C₂), 161.8 (C₄). ES-HRMS [M+H]⁺ calcd. (C₁₉H₁₇N₂O₃)⁺: 321.1194, found: 321.1260.

White solid; yield: 60%; mp: 220-222 °C; IR (ATR, cm⁻¹) v: 2120.73 (C=C), 3246.61 (=C–H), 1630.35 (C=O). R_f (cyclohexane/ EtOAc: 9/1) = 0.5. ¹HNMR (300 MHz, CDCl₃): δ (ppm) = 1.39 (s, 9H, H₁₉), 2.39 (t, 1H, H₁₇, *J* = 2.4 Hz), 4.72 (d, 2H, H₁₅, *J* = 2.4 Hz), 7.50-7.58 (m, 3H, H_{arom}), 7.69-7.81 (m, 4H, H_{arom}), 8.36 (d, 1H, H₅, *J* = 8.2 Hz). ¹³CNMR (75 MHz, CDCl₃): δ (ppm) = 31.2 (C₁₉), 34.9 (C₁₈), 36.5 (C₁₅), 72.6 (C₁₇), 78.6 (C₁₆), 120.6 (C_{5a}), 125.8 (2C_{arom}), 126.9 (C_{arom}), 127.1 (C_{arom}), 127.6 (C_{arom}), 127.9 (2C_{arom}), 131.8 (C₉), 134.6 (C_{arom}), 147.2 (C_{8a}), 153.7 (C₁₂), 155.6 (C₂), 161.7 (C₄). ES-HRMS [M+H]⁺ calcd. (C₂₁H₂₁N₂O)⁺: 317.1609, found: 317.1666.

3f: 2-(4-chlorophenyl)-3-(prop-2-yn-1-yl)benzopyrimidin-4(3H)-one

White solid; yield: 15%; mp: 159-161 °C; IR (ATR, cm⁻¹) v: 2121.96 (C=C), 3248.47 (=C–H), 1620.10 (C=O); R_f (cyclohexane/ EtOAc: 9/1) = 0.5. ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 2.38 (t, 1H, H₁₇, *J* = 2.3 Hz), 4.68 (d, 2H, H₁₅, *J* = 2.3 Hz), 7.55 (d, 3H, H_{arom}, *J* = 8.4 Hz), 7.72-7.84 (m, 4H, H_{arom}), 8.37 (d, 1H, H₅, *J* = 7.9 Hz). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 36.3 (C₁₅), 73.0 (C₁₇), 78.2 (C₁₆), 120.6 (C_{5a}), 127.0 (C_{arom}), 127.5 (C_{arom}), 127.6 (C_{arom}), 129.2 (2C_{arom}), 129.6 (2C_{arom}), 133.1 (C₉), 134.8 (C_{arom}), 136.7 (C₁₂), 147.0 (C_{8a}), 154.3 (C₂), 161.5 (C₄). ES-HRMS [M+H]⁺ calcd. (C₁₇H₁₂ClN₂O)⁺: 294.0530, found: 294.0651.

3g: 2-(4-fluorophenyl)-3-(prop-2-yn-1-yl)benzopyrimidin-4(3H)-one

White solid; yield: 21%; mp: 190-192 °C; IR (ATR, cm⁻¹) *v*: 2124.82 (C=C), 3246.49 (=C–H), 1578.13 (C=O); R_f (cyclohexane/ EtOAc: 9/1) = 0.5. ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 2.38 (t, 1H, H₁₇, *J* = 2.4 Hz), 4.69 (d, 2H, H₁₅, *J* = 2.4 Hz), 7.23-7.29 (m, 2H, H_{arom}), 7.55-7.57 (m, 1H, H_{arom}), 7.74-7.84 (m, 4H, H_{arom}), 8.36 (d, 1H, H₅, *J* = 8.1 Hz). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 36.3 (C₁₅), 72.8 (C₁₇), 78.3 (C₁₆), 116.0 (d, *J* = 22.0 Hz, C₁₁ + C₁₃), 120.6 (C_{5a}), 126.9 (C_{arom}), 127.4 (C_{arom}), 127.6 (C_{arom}), 130.4 (d, *J* = 8.6 Hz, C₁₀ + C₁₄), 130.8 (d, *J* = 3.0 Hz, C₉), 134.8 (C_{arom}), 147.0 (C_{8a}), 154.5 (C₂), 161.6 (C₄), 163.8 (d, *J* = 251.3 Hz, C₁₂). ES-HRMS [M+H]⁺ calcd. (C₁₇H₁₂FN₂O)⁺: 279.0889, found: 279.0943.

3h: 2-(3-bromophenyl)-3-(prop-2-yn-1-yl)benzopyrimidin-4(3H)-one

White solid; yield: 20%; mp: 174-176 °C; IR (ATR, cm⁻¹) v: 2134.15 (C=C), 3245.66 (=C–H), 1610.55 (C=O); R_f (cyclohexane/ EtOAc: 9/1) = 0.5. ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 2.40 (t, 1H, H₁₇, *J* = 2.4 Hz), 4.68 (d, 2H, H₁₅, *J* = 2.4 Hz), 7.44 (t, 1H, H₆, *J* = 7.9 Hz), 7.54 (t, 1H, H₇, *J* = 6.7 Hz), 7.70-7.84 (m, 4H, H_{arom}), 7.93 (t, 1H, H_{arom}, *J* = 1.6 Hz), 8.37 (d, 1H, H₅, *J* = 8.8 Hz). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 36.2 (C₁₅), 73.0 (C₁₇), 78.1 (C₁₆), 120.6 (C_{5a}), 122.9 (C₁₁), 126.6 (C_{arom}), 127.0 (C_{arom}), 127.6 (C_{arom}), 127.7 (C_{arom}), 130.3 (C_{arom}), 131.3 (C_{arom}), 133.5 (C_{arom}), 134.8 (C_{arom}), 136.4 (C₉), 146.9 (C_{8a}), 153.8 (C₂), 161.4 (C₄). ES-HRMS [M+H]⁺ calcd. (C₁₇H₁₂BrN₂O)⁺: 339.0098, found: 338.0148.

White solid; yield: 58%; mp: 140-142 °C; IR (ATR, cm⁻¹) v: 2126.35 (=C–H), 3206.16 (=C–H); R_f (cyclohexane/ EtOAc: 9/1) = 0.5. ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 2.59 (t, 1H, H₁₇, J = 2.4 Hz), 5.37 (d, 2H, H₁₅, J = 2.4 Hz), 7.53-7.59 (m, 4H, H_{arom}), 7.86 (t, 1H, H₇, J = 8.3 Hz), 8.03 (d, 1H, H₅, J = 8.4 Hz), 8.23 (d, 1H, H₈, J = 8.1 Hz), 8.60-8.64 (m, 2H, H_{arom}). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 54.2 (C₁₅), 75.1 (C₁₇), 78.2 (C₁₆), 114.9 (C_{5a}), 123.5 (C_{arom}), 126.6 (C_{arom}), 128.0 (C_{arom}), 128.4 (2C_{arom}), 128.5 (2C_{arom}), 130.6 (C_{arom}), 133.8 (C_{arom}), 137.8 (C₉), 152.1 (C_{8a}), 159.7 (C₂), 165.5 (C₄). ES-HRMS [M+H]⁺ calcd. (C₁₇H₁₃N₂O)⁺: 261.0983, found: 261.1036.

White solid; yield: 44%; mp: 160-162 °C; IR (ATR, cm⁻¹) v: 2126.65 (C=C–H), 3199.32 (=C–H); R_f (cyclohexane/ EtOAc: 9/1) = 0.5. ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 2.47 (s, 3H, H₁₈, J = 2.4 Hz), 2.59 (t, 1H, H₁₇, J = 2.4 Hz), 5.35 (d, 2H, H₁₅, J = 2.4 Hz), 7.34 (d, 2H, H₁₁, J = 8.0 Hz), 7.53 (t, 1H, H₆, J = 8.1 Hz), 7.81-7.87 (m, 1H, H₇), 8.01 (d, 1H, H₅, J = 8.4 Hz), 8.20 (d, 1H, H₈, J = 8.9 Hz), 8.50 (d, 2H, H₁₀₋₁₄, J = 8.2 Hz). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 21.3 (C₁₈), 54.0 (C₁₅), 75.0 (C₁₇), 78.3 (C₁₆), 114.8 (C_{5a}), 123.4 (C_{arom}), 126.4 (C_{arom}), 127.8 (C_{arom}), 128.5 (2C_{arom}), 129.2 (2C_{arom}), 133.7 (C_{arom}), 135.4 (C₉), 140.8 (C₁₂), 152.1 (C_{8a}), 159.8 (C₂), 165.4 (C₄). ES-HRMS [M+H]⁺ calcd. (C₁₈H₁₅N₂O)⁺: 275.1140, found: 275.1194.

White solid; yield: 27%; mp: 137-139 °C; IR (ATR, cm⁻¹) v: 2127.11 (C=C), 3185.15 (=C–H); R_f (cyclohexane/ EtOAc: 9/1) = 0.5. ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 2.59 (t,1H, H₁₇, J = 1.9 Hz),3.91 (s, 3H, OCH₃), 5.35 (d, 2H, H₁₅, J = 2.2 Hz), 7.04 (d, 2H, H₁₁₋₁₃, J = 8.8 Hz), 7.51 (t, 1H, H₆, J = 7.5 Hz), 7.83 (t, 1H, H₇, J = 7.4 Hz), 7.98 (d, 1H, H₅, J = 8.4 Hz), 8.19 (d, 1H, H₈, J = 8.1 Hz), 8.56 (d, 2H, H₁₀₋₁₄, J = 8.8 Hz). ¹³CNMR (75 MHz, CDCl₃): δ (ppm) = 54.1 (C₁₅), 55.4 (OCH₃), 75.0 (C₁₇), 78.3 (C₁₆), 113.8 (2C_{arom}), 114.7 (C_{5a}), 123.4 (C_{arom}), 126.2 (C_{arom}), 127.7 (C_{arom}), 130.1 (2C_{arom}), 130.5 (C₉), 133.7 (C_{arom}), 152.1 (C_{8a}), 159.5 (C₂), 161.8 (C₁₂), 165.3 (C₄). ES-HRMS [M+H]⁺ calcd. (C₁₈H₁₅N₂O₂)⁺: 291.1089, found: 291.1145.

4d: 2-(3,4-dimethoxyphenyl)-4-(prop-2-yn-1-yloxy)benzopyrimidine

White solid; yield: 51%; mp: 143-145 °C; IR (ATR, cm⁻¹) v: 2117.35 (C=C), 3271.64 (=C–H); R_f (cyclohexane/ EtOAc: 9/1) = 0.5. ¹H NMR(300 MHz, CDCl₃): δ (ppm) = 2.59 (t, 1H, H₁₇, J = 2.4 Hz), 3.99 (s, 3H, OCH₃), 4.07 (s, 3H, OCH₃), 5.32 (d, 2H, H₁₅, J = 2.4 Hz), 7.00 (d, 1H, H₁₃, J = 8.4 Hz), 7.49-7.54 (m, 1H, H₆), 7.80-7.85 (m, 1H, H₇), 7.98 (d, 1H, H₅, J = 8.4 Hz), 8.17-8.21 (m, 3H, H_{arom}). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 54.1 (C₁₅), 55.9 (2OCH₃), 75.0 (C₁₇), 78.3 (C₁₆), 110.6 (C_{arom}), 111.1 (C_{arom}), 114.7 (C_{5a}), 121.9 (C_{arom}), 123.4 (C_{arom}), 126.2 (C_{arom}), 127.7 (C_{arom}), 130.7 (C₉), 133.7 (C_{arom}), 148.9 (C₁₂), 151.4 (C₁₁), 152.1 (C_{8a}), 159.4 (C₂), 165.3 (C₄). ES-HRMS [M+H]⁺ calcd. (C₁₉H₁₇N₂O₃)⁺: 321.1194, found: 321.1253.

White solid; yield: 31%; mp: 120-122°C; IR (ATR, cm⁻¹) v: 2129.98 (C=C), 32015.20 (=C–H); R_f (cyclohexane/ EtOAc: 9/1) = 0.5. ¹H NMR(300 MHz, CDCl₃): δ (ppm) = 1.42 (s, 9H, H₁₉), 2.59 (t, 1H, H₁₇, *J* = 2.4 Hz), 5.36 (d, 2H, H₁₅, *J* = 2.4 Hz), 7.52 (d, 1H, H₆, *J* = 8.1Hz), 7.57 (d, 2H, H₁₁₋₁₃, *J* = 8.5Hz), 7.82-7.87 (m, 1H, H₇), 8.02 (d, 1H, H₅, *J* = 8.4 Hz), 8.21 (d, 1H, H₈, *J* = 9.0 Hz), 8.53 (d, 2H, H₁₀₋₁₄, *J* = 8.6 Hz). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 31.6 (C₁₉), 34.8 (C₁₈), 54.2 (C₁₅), 75.0 (C₁₇), 78.3 (C₁₆), 110.6 (C_{arom}), 111.1 (C_{arom}), 114.9 (C_{5a}), 123.4 (C_{arom}), 125.5 (2C_{arom}), 126.4 (C_{arom}), 127.9 (C_{arom}), 128.3 (2C_{arom}), 133.7 (C_{arom}), 135.2 (C₉), 152.4 (C₁₁), 152.1 (C_{8a}), 153.8 (C₁₂), 159.8 (C₂), 165.4 (C₄). ES-HRMS [M+H]⁺ calcd. (C₂₁H₂₁N₂O)⁺: 317.1609, found: 317.1664.

White solid; yield: 73%; mp: 198-200 °C; IR (ATR, cm⁻¹) v: 2124.10 (C=C), 3208.15 (=C-H); R_f (cyclohexane/ EtOAc: 9/1) = 0.5. ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 2.59 (t, 1H, H₁₇, J = 2.4 Hz), 5.35 (d, 2H, H₁₅, J = 2.4 Hz), 7.49 (d, 2H, H₁₀₋₁₄, J = 8.7Hz), 7.54-7.60 (m, 1H, H₆), 7.84-7.90 (m, 1H, H₇), 8.01 (d, 1H, H₅, J = 8.4 Hz), 8.22 (d, 1H, H₈, J = 7.4 Hz), 8.56 (d, 2H, H₁₁₋₁₃, J = 6.8 Hz). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 54.3 (C₁₅), 75.2 (C₁₇), 78.1 (C₁₆), 114.9 (C_{5a}), 123.5 (C_{arom}), 126.8 (C_{arom}), 127.9 (C_{arom}), 128.6 (2C_{arom}), 129.8 (2C_{arom}), 133.9 (C_{arom}), 136.3 (C₉), 136.8 (C₁₂), 151.9 (C_{8a}), 159.6 (C₂), 165.6 (C₄). ES-HRMS [M+H]⁺ calcd. (C₁₇H₁₂ClN₂O)⁺: 295.0644, found: 295.0684.

White solid; yield: 65%; mp: 168-170°C; IR (ATR, cm⁻¹) v: 2127.348 (C=C), 3196.48 (=C–H); R_f (cyclohexane/ EtOAc: 9/1) = 0.5. ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 2.59 (t,1H, H₁₇, J = 2.4 Hz), 5.35 (d, 2H, H₁₅, J = 2.4 Hz), 7.21 (t, 2H, H_{arom}, J = 8.7 Hz), 7.56 (t, 1H, H₆, J = 7.6 Hz), 7.86 (t, 1H, H₇, J = 8.2 Hz), 8.00 (d, 1H, H₅, J = 8.4 Hz), 8.22 (d, 1H, H₈, J = 8.2Hz), 8.59-8.64 (m, 2H, H_{arom}). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 54.2 (C₁₅), 75.1 (C₁₇), 78.1 (C₁₆), 114.8 (C_{5a}), 115.4 (d, J = 21.6 Hz, C₁₁ + C₁₃), 123.5 (C_{arom}), 126.6 (C_{arom}), 127.9 (C_{arom}), 130.6 (d, J = 8.6 Hz, C₁₀ + C₁₄), 133.8 (C_{arom}), 134.0 (d, J = 3 Hz, C₉), 152.0 (C_{8a}), 158.7 (C₂), 164.6 (d, J = 249.0 Hz, C₁₂), 165.6 (C₄). ES-HRMS [M+H]⁺ calcd. (C₁₇H₁₂FN₂O)⁺: 279.0889, found: 279.0944.

4h: 2-(3-bromophenyl)-4-(prop-2-yn-1-yloxy)benzopyrimidine

White solid; yield: 68%; mp: 152-154 °C; IR (ATR, cm⁻¹) v: 2134.15 (C=C), 3293.32 (=C-H); R_f (cyclohexane/ EtOAc: 9/1) = 0.5. ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 2.61 (t, 1H, H₁₇, J = 2.4 Hz), 5.36 (d, 2H, H₁₅, J = 2.4 Hz), 7.41 (t, 1H, H_{arom}, J = 7.9 Hz), 7.56-7.66 (m, 2H, H_{arom}), 7.87-7.91 (m, 1H, H_{arom}), 8.02 (d, 1H, H₅, J = 8.3 Hz), 8.23 (d, 1H, H₈, J = 9.0 Hz), 8.53-8.56 (m, 1H, H_{arom}), 8.75 (t, 1H, H_{arom}, J = 1.7 Hz). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 54.4 (C₁₅), 75.2 (C₁₇), 78.0 (C₁₆), 115.1 (C_{5a}), 122.7 (C₁₁), 123.5 (C_{arom}), 127.0 (C_{arom}), 127.1 (C_{arom}), 128.0 (C_{arom}), 129.9 (C_{arom}), 131.4 (C_{arom}), 133.4 (C_{arom}), 133.9 (C_{arom}), 139.9 (C₉), 151.9 (C_{8a}), 158.2 (C₂), 165.6 (C₄). ES-HRMS [M+H]⁺ calcd. (C₁₇H₁₂BrN₂O)⁺: 339.0097, found: 339.0147.

IV. General procedure for the synthesis of the cyclo-adducts 5a-h and 6a-h

To a stirred solution of dipolarophiles **3** or **4** (0.045 mmol) and trifluroroacetic acid (0.2 equiv.) in dry THF (3 mL), *N*-benzyl-*N*-methoxymethyl-(trimethylsilyl)methylamine (3 mmol) was added dropwise at room temperature for 3 h. The resulting mixture was concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography to give the pure cycloadducts **5** and **6**.

5a: 3-((1-benzyl-2,5-dihydro-1H-pyrrol-3-yl)methyl)-2-phénylbenzopyrimidin-4(3H)-one

White solid; yield: 73%; mp: 99-101 °C; IR (ATR, cm⁻¹) v: 1666.88 (C=O); R_f (cyclohexane/EtOAc: 7/3) = 0.5. ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 3.24-3.28 (m, 2H, H₅·), 3.34-3.38 (m, 2H, H₂·), 3.67 (s, 2H, H₆·), 4.59 (s, 2H, H₁₅), 5.17-5.20 (m, 1H, H₃·), 7.13-7.24 (m, 5H, H_{arom}), 7.38-7.48 (m, 6H, H_{arom}), 7.67-7.75 (m, 2H, H_{arom}), 8.26 (d, 1H, H₅, *J* = 8.3 Hz). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 44.4 (C₁₅), 59.6-60.3 (C₅·+C₂·), 60.4 (C₆·), 120.6 (C_{5a}), 124.1 (C_{arom}), 126.9 (C_{arom}), 127.0 (C_{arom}), 127.1 (C_{arom}), 127.5 (C_{arom}),127.9 (2C_{arom}), 128.3 (2C_{arom}), 128.5 (2C_{arom}), 128.6 (2C_{arom}), 130.0 (C_{arom}), 134.5 (C₃·), 135.1 (C₉), 136.6 (C₇·), 139.2 (C₄·), 147.2 (C_{8a}), 156.1 (C₂), 162.0 (C₄). ES-HRMS [M+H]⁺ calcd. (C₂₆H₂₄N₃O)⁺: 394.1875, found: 394.1933.

5b: 3-((1-benzyl-2,5-dihydro-1H-pyrrol-3-yl)methyl)-2-(p-tolyl)benzopyrimidin-4(3H)-one

White solid; yield: 95%; mp: 94-96 °C; IR (ATR, cm⁻¹) *v*: 1671.31 (C=O); R_f (cyclohexane/EtOAc: 7/3) = 0.5. ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 2.35 (s, 3H, H₁₆), 3.25-3.29 (m, 2H, H₅·), 3.35-3.39 (m, 2H, H₂·), 3.67 (s, 2H, H₆·), 4.58 (s, 2H, H₁₅), 5.20-5.21 (m, 1H, H₃·), 7.13-7.23 (m, 7H, H_{arom}), 7.34 (d, 2H, H_{arom}, *J* = 8.0 Hz), 7.40-7.47 (m, 1H, H_{arom}), 7.63-7.71 (m, 2H, H_{arom}), 8.24 (d, 1H, H₅, *J* = 8.2 Hz). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 21.4 (C₁₆), 44.5 (C₁₅), 59.7-60.3 (C₅·+C₂·), 60.4 (C₆·), 120.6 (C_{5a}), 123.9 (C_{arom}), 126.9 (C_{arom}), 127.0

 (C_{arom}) , 127.5 (C_{arom}), 127.9 ($2C_{arom}$), 128.3 ($2C_{arom}$), 128.5 ($2C_{arom}$), 129.2 ($2C_{arom}$), 132.3 (C_9), 134.4 (C_3), 136.7 (C_{12}), 139.1 (C_7), 140.1 (C_4), 147.3 (C_{8a}), 156.3 (C_2), 162.0 (C_4). ES-HRMS [M+H]⁺ calcd. ($C_{27}H_{26}N_3O$)⁺: 408.2031, found: 408.2092.

5c: 3-((1-benzyl-2,5-dihydro-1H-pyrrol-3-yl)méthyl)-2-(4-methoxyphenyl)benzopyrimidin-4(3H)-one

Yellow oil; yield: 52%; IR (ATR, cm⁻¹) v: 1671.62 (C=O); R_f (cyclohexane/ EtOAc: 7/3) = 0.5. ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 3.37-3.46 (m, 2H, H₅·), 3.47-3.50 (m, 2H, H₂·), 3.78 (s, 2H, H₆·), 3.89 (s, 3H, OCH₃), 4.69 (s, 2H, H₁₅), 5.30-5.33 (m, 1H, H₃·), 6.99 (d, 2H, H_{arom}, J = 8.8 Hz), 7.25-7.37 (m, 5H, H_{arom}), 7.50-7.55 (m, 3H, H_{arom}), 7.47-7.81 (m, 2H, H_{arom}), 8.33 (d, 1H, H₅, J = 8.3 Hz). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 44.6 (C₁₅), 55.4 (OCH₃), 59.7-60.3 (C₅·+C₂·), 60.4 (C₆·), 114.0 (2C_{arom}), 120.5 (C_{5a}), 123.8 (C_{arom}), 126.9 (C_{arom}), 126.9 (C_{arom}), 127.0 (C_{arom}), 127.5 (C_{arom}),127.6(C₉),128.3 (2C_{arom}), 128.6 (2C_{arom}), 129.6 (2C_{arom}), 134.4 (C₃·), 136.8 (C₇·), 139.1 (C₄·), 147.3 (C_{8a}), 156.0 (C₂), 160.8(C₁₂), 162.1 (C₄). ES-HRMS [M+H]⁺ calcd. (C₂₇H₂₆N₃O₂)⁺: 424.1980, found: 424.2041.

5d: 3-((1-benzyl-2,5-dihydro-1H-pyrrol-3-yl)methyl)-2-(3,4-dimethoxyphenyl)benzopyrimidin-4(3H)-one

White solid; yield: 60%; mp: 140-142 °C; IR (ATR, cm⁻¹) *v*: 1671.83 (C=O); R_f (cyclohexane/EtOAc: 7/3) = 0.5. ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 3.37-3.40 (m, 2H, H₅·), 3.46-3.49 (m, 2H, H₂·), 3.77 (s, 2H, H₆·), 3.91 (s, 3H, OCH₃), 3.95 (s, 3H, OCH₃), 4.65 (s, 2H, H₁₅), 5.36-5.38 (m, 1H, H₃·), 6.96 (d, 1H, H_{arom}, *J* = 8.5 Hz), 7.11-7.17 (m, 2H, H_{arom}), 7.20-7.31 (m, 5H, H_{arom}), 7.48-7.54 (m, 1H, H_{arom}), 7.74-7.82 (m, 2H, H_{arom}), 8.32 (d, 1H, H₅, *J* = 6.1 Hz). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 45.0 (C₁₅), 55.9 (OCH₃), 56.0 (OCH₃), 59.7-60.2 (C₅·+C₂·),

60.4 (C₆[•]), 110.9 (C_{arom}), 111.0 (C_{arom}), 120.5 (C_{5a}), 120.9 (C_{arom}), 123.7 (C_{arom}), 126.9 (C_{arom}), 127.0 (C_{arom}), 127.0 (C_{arom}), 127.5 (C_{arom}), 127.6 (C₉), 128.3 (2C_{arom}), 128.5 (2C_{arom}), 134.4 (C₃[•]), 137.2 (C₇[•]), 139.2 (C₄[•]), 147.2 (C_{8a}), 148.8 (C₁₁), 150.4 (C₁₂), 156.0 (C₂), 162.1 (C₄). ES-HRMS $[M+H]^+$ calcd. (C₂₈H₂₈N₃O₃)⁺: 454.2086, found: 454.2146.

5e: 3-((1-benzyl-2,5-dihydro-1H-pyrrol-3-yl)methyl)-2-(4-(tert-butyl)phenyl)quinazolin-4(3H)-one

White solid; yield: 73%; mp:179-181 °C; IR (ATR, cm⁻¹) v: 1666.02 (C=O); R_f (cyclohexane/EtOAc: 7/3) = 0.5. ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 1.18 (s, 9H, H₁₇), 3.15-3.25 (m, 2H, H₅·), 3.26-3.28 (m, 2H, H₂·), 3.57 (s, 2H, H₆·), 4.49 (s, 2H, H₁₅), 5.09-5.11 (m, 1H, H₃·), 7.02-7.12 (m, 5H, H_{arom}), 7.26-7.35 (m, 5H, H_{arom}), 7.55-7.61 (m, 2H, H_{arom}), 8.13 (d, 1H, H₅, *J* = 7.7 Hz). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 31.2 (C₁₇), 34.9 (C₁₆), 44.5 (C₁₅), 59.7-60.3 (C₅·+C₂·), 60.5 (C₆·), 120.6 (C_{5a}), 123.8 (C_{arom}), 125.6 (2C_{arom}), 126.9 (C_{arom}), 127.0 (C_{arom}), 127.0 (C_{arom}), 127.7 (2C_{arom}), 128.3 (2C_{arom}), 128.6 (2C_{arom}), 132.2 (C₉), 134.4 (C₃·), 136.8 (C₇·), 139.2 (C₄·), 147.3 (C_{8a}), 153.3 (C₁₂), 156.3 (C₂), 162.0 (C₄). ES-HRMS [M+H]⁺ calcd. (C₃₀H₃₂N₃O)⁺: 450.2501, found:450.2552.

5f: 3-((1-benzyl-2,5-dihydro-1H-pyrrol-3-yl)methyl)-2-(4-chlorophenyl)benzopyrimidin-4(3H)-one

White solid; yield: 62%; mp: 127-129 °C; IR (ATR, cm⁻¹) v: 1667.94 (C=O); R_f (cyclohexane/EtOAc: 7/3) = 0.5. ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 3.51-3.54 (m, 2H, H₅·), 3.55-3.63 (m, 2H, H₂·), 3.68 (s, 2H, H₆·), 5.20 (s, 2H, H₁₅), 5.87-5.89 (m, 1H, H₃·), 7.19-7.31 (m, 5H, H_{arom}), 7.38 (d, 2H, *J* = 7.4 Hz, H_{arom}), 7.42-7.47 (m, 1H, H_{arom}), 7.72-7.78 (m, 1H, H_{arom}), 7.89 (d, 1H, *J* = 8.2 Hz, H_{arom}), 8.08 (d, 1H, *J* = 8.2 Hz, H_{arom}), 8.42 (d, 2H, *J* = 7.4 Hz, H_{arom}). ¹³C

NMR (75 MHz, CDCl₃): δ (ppm) = 59.8 (C₁₅), 60.2 (C₅·), 60.4 (C₆·), 63.7 (C₂·), 115.2 (C_{5a}), 123.5 (C_{arom}), 125.8 (C_{arom}), 126.6 (C_{arom}), 127.1 (C_{arom}), 127.9 (C_{arom}), 128.4 (2C_{arom}), 128.6 (2C_{arom}), 128.7 (2C_{arom}), 129.7 (2C_{arom}), 133.7 (C₉), 136.5 (C₃·), 136.6 (C₁₂), 136.7 (C₇·), 139.1 (C₄·), 151.8 (C_{8a}), 158.8 (C₂), 166.3 (C₄). ES-HRMS [M+H]⁺ calcd. (C₂₆H₂₃ClN₃O)⁺: 428.1496, found: 428.1546.

5g: 3-((1-benzyl-2,5-dihydro-1H-pyrrol-3-yl)méthyl)-2-(4-fluorophényl)benzopyrimidin-4(3H)-one

White solid; yield: 93%; mp: 124-126 °C; IR (ATR, cm⁻¹) v: 1665,83 (C=O); R_f (cyclohexane/EtOAc: 7/3) = 0.5. ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 3.35-3.38 (m, 2H, H₅·), 3.45-3.48 (m, 2H, H₂·), 3.37 (s, 2H, H₆·), 4.65 (s, 2H, H₁₅), 5.28-5.31 (m, 1H, H₃·), 7.17-7.33 (m, 7H, H_{arom}), 7 52-7.59 (m, 3H, H_{arom}), 7.74-7.83 (m, 2H, H_{arom}), 8.35 (d, 1H, H₅, *J* = 8.3 Hz). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 44.5 (C₁₅), 59.7 (C₅· or C₂·), 60.3 (C₅· or C₂·), 60.4 (C₆·), 115.8 (d, *J* = 22.0 Hz, C₁₁ + C₁₃), 120.6 (C_{5a}), 124.1 (C_{arom}), 127.0 (C_{arom}), 127.1 (C_{arom}), 127.3 (C_{arom}), 127.5 (C_{arom}), 128.4 (2C_{arom}), 128.6 (2C_{arom}), 130.2 (d, *J* = 8.5 Hz, C₁₀ + C₁₄), 131.2 (d, *J* = 3.6 Hz, C₉), 134.6 (C₃·), 136.7 (C₄·), 139.1 (C₇·), 147.1 (C_{8a}), 155.2 (C₂), 161.9 (C₄), 163.5 (d, *J* = 250.0 Hz, C₁₂). ES-HRMS [M+H]⁺ calcd. (C₂₆H₂₃FN₃O)⁺: 412.1780, found :412.1833.

5h: 3-((1-benzyl-2,5-dihydro-1H-pyrrol-3-yl)methyl)-2-(3-bromophenyl)benzopyrimidin-4(3H)-one

White solid; yield: 80%; mp: 107-109 °C; IR (ATR, cm⁻¹) *v*: 1667.90 (C=O); R_f (cyclohexane/EtOAc: 7/3) = 0.5. ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 3.36-3.39 (m, 2H, H₅·), 3.47-3.49 (m, 2H, H₂·), 3.78 (s, 2H, H₆·), 4.64 (s, 2H, H₁₅), 5.30-5.31 (m, 1H, H₃·), 7.24-7.36 (m, 6H, H_{arom}), 7.39-7.41 (m, 1H, H_{arom}), 7.49-7.58 (m, 2H, H_{arom}), 7.66-7.84 (m, 4H, H_{arom}), 8.36 (d, 1H, H₅, *J* = 8.3 Hz). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 44.5 (C₁₅), 59.6 (C₅·)-60.3 (C₂·),

60.4 (C₆[•]), 120.7 (C_{5a}), 122.6 (C₁₁), 124.5 (C_{arom}), 126.5 (C_{arom}), 127.0 (2C_{arom}), 127.4 (C_{arom}), 127.6 (C_{arom}), 128.3 (2C_{arom}), 128.5 (2C_{arom}), 130.2 (C_{arom}), 131.2 (C_{arom}), 133.1 (C_{arom}), 134.7 (C₃[•]), 136.6 (C₉), 136.8 (C₇[•]), 139.1 (C₄[•]), 147.0 (C_{8a}), 154.5 (C₂), 161.8 (C₄). ES-HRMS $[M+H]^+$ calcd. (C₂₆H₂₃BrN₃O)⁺: 472.0971, found: 472.1021.

6a: 4-((1-benzyl-2,5-dihydro-1H-pyrrol-3-yl)methoxy)-2-phenylbenzopyrimidine

White solid; yield: 85%; mp: 97-99 °C; R_f (cyclohexane/ EtOAc: 9/1) = 0.5. ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 3.53-3.56 (m, 2H, H₅·), 3.62-3.79 (m, 2H, H₂·), 3.79 (s, 2H, H₆·), 5.23 (s, 2H, H₁₅), 5.87-5.89 (m, 1H, H₃·), 7.16-7.32 (m, 4H, H_{arom}), 7.43-7.47 (m, 4H, H_{arom}), 7.72-7.78 (M, 1H, H₆), 7.92 (d, 1H, H₇, J = 8.3 Hz), 8.09 (d, 1H, H₅, J = 7.8 Hz), 8.48-8.51 (m, 2H, H_{arom}).¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 59.8 (C₅·), 60.2 (C₂·), 60,4 (C₆·), 63.6 (C₁₅), 115.2 (C_{5a}), 123.5 (C_{arom}), 125.6 (C_{arom}), 126.5 (C_{arom}), 127.1 (C_{arom}), 128.0 (C_{arom}), 128.4 (2C_{arom}), 128.5 (4C_{arom}), 128.7 (2C_{arom}), 130.5 (C_{arom}), 133.6 (C₃·), 136.8 (C₇·), 138.0 (C₉), 139.0 (C₄·), 151.9 (C_{8a}), 159.9 (C₂), 166.3 (C₄). ES-HRMS [M+H]⁺ calcd. (C₂₆H₂₄N₃O)⁺: 394.1875, found: 394.1926.

6b: 4-((1-benzyl-2,5-dihydro-1H-pyrrol-3-yl)methoxy)-2-(p-tolyl)benzopyrimidine

White solid; yield: 87%; mp: 104-106 °C; R_f (cyclohexane/ EtOAc: 9/1) = 0.5. ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 2.37 (s, 3H, H₁₆), 3.53-3.54 (m, 2H, H₅·), 3.61-3.64 (m, 2H, H₂·), 3.79 (s, 2H, H₆·), 5.23 (s, 2H, H₁₅), 5.88-5.89 (m, 1H), 7.19-7.32 (m, 7H, H_{arom}), 7.43 (t, 1H, H₆, *J* = 7.4 Hz), 7.74 (t, 1H, H₇, *J* = 7.2 Hz), 7.90 (d, 1H, H₅, *J* = 8.4 Hz), 8.08 (d, 1H, H₈, *J* = 8.1 Hz), 8.38 (d, 2H, H_{arom}, *J* = 8.1 Hz). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 21.5 (C₁₆), 59.8 (C₅·), 60.2 (C₂·), 60.4 (C₆·), 63.6 (C₁₅), 115.1 (C_{5a}), 123.4 (C_{arom}), 125.6 (C_{arom}), 126.2 (C_{arom}), 127.1 (C_{arom}), 127.8 (C_{arom}), 128.4 (4C_{arom}), 128.7 (2C_{arom}), 129.2 (2C_{arom}), 133.5 (C₃·), 135.5 (C₉), 136.8 (C₁₂), 139.2 (C₇·), 140.7(C₄·), 152.0 (C_{8a}), 160.0 (C₂), 166.2 (C₄). ES-HRMS [M+H]⁺ calcd. (C₂₇H₂₆N₃O)⁺: 408.2031, found: 408.2092.

6c: 4-((1-benzyl-2,5-dihydro-1H-pyrrol-3-yl)methoxy)-2-(p-tolyl)benzopyrimidine

Yellow oil; yield: 63%; R_f (cyclohexane/ EtOAc: 9/1) = 0.5. ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 3.47-3.50 (m, 2H, H₅·), 3.57-3.60 (m, 2H, H₂·), 3.74 (s, 2H, H₆·), 3.78 (s, 3H, OCH₃), 5.16 (s, 2H, H₁₅), 5.82-5.84 (m, 1H, H₃·), 6.89 (d, 2H, H_{arom}, *J* = 7.4 Hz), 7.12-7.28 (m, 5H, H_{arom}), 7.33-7.35 (m, 1H, H₆), 7.65-7.70 (m, 1H, H₇), 7.83 (d, 1H, H₅, *J* = 8.4 Hz), 8.00-8.03 (m, 1H, H₈), 8.38-8.43 (m, 2H, H_{arom}). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 55.4 (OCH₃), 59.8- (C₅·), 60.2 (C₂·), 60.4 (C₆·), 63.5 (C₁₅), 113.7 (2C_{arom}), 114.9 (C_{5a}), 123.5 (C_{arom}), 125,6 (C_{arom}), 126.0 (C_{arom}), 127.1 (C_{arom}), 127.7 (C_{arom}), 128.4 (2C_{arom}), 128.7 (2C_{arom}), 130.1 (2C_{arom}), 130.7 (C₉), 133.5 (C₃·), 136.9 (C₇), 139.1 (C₄·), 152.1 (C_{8a}), 159.7 (C₂), 161.7 (C₁₂), 166.1 (C₄). ES-HRMS [M+H]⁺ calcd. (C₂₇H₂₆N₃O₂)⁺: 424.1980, found: 424.2041.

6d: 4-((1-benzyl-2,5-dihydro-1H-pyrrol-3-yl)methoxy)-2(3,4dimethoxyphenyl)benzopyrimidine

White solid; yield: 65%; mp: 102-104 °C; R_f (cyclohexane/ EtOAc: 9/1) = 0.5. ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 3.54-3.57 (m, 2H, H₅·), 3.62-3.65 (m, 2H, H₂·), 3.79 (s, 2H, H₆·), 3.90 (s, 3H, OCH₃), 3.97 (s, 3H, OCH₃), 5.21 (s, 2H, H₁₅), 5.87-5.88 (m, 1H, H₃·), 6.89 (d, 1H, H_{arom}, J = 8.4 Hz), 7.20-7.32 (m, 5H, H_{arom}), 7.38-7.43 (m, 1H, H₆), 7.70-7.75 (m, 1H, H₇), 7.88 (d, 1H, H₅, J = 8.3 Hz), 8.05-8.12 (m, 3H, H_{arom}). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 55.9 (OCH₃), 56.0 (OCH₃), 59.8- (C₅·), 60.2 (C₂·), 60.3 (C₆·), 63.4 (C₁₅), 110.6 (C_{arom}), 111.0 (C_{arom}), 114.9 (C_{5a}), 121.9 (C_{arom}), 123.4 (C_{arom}), 125.6 (C_{arom}), 126.1 (C_{arom}), 127.2 (C_{arom}), 127.7 (C_{arom}), 128.4 (2C_{arom}), 128.7 (2C_{arom}), 130.9 (C₉), 133.5 (C₃·), 136.8 (C₇·), 138.8 (C₄·), 148.9 (C₁₂), 151.3 (C₁₁), 152.0 (C_{8a}), 159.6 (C₂), 166.1 (C₄). ES-HRMS [M+H]⁺ calcd. (C₂₆H₂₈N₃O)⁺: 454.2086, found: 454.2139.

6e: 4-((1-benzyl-2,5-dihydro-1H-pyrrol-3-yl)methoxy)-2-(4-(tert-butyl)phenyl)benzopyrimidine

Yellow oil; yield: 59%; R_f (cyclohexane/ EtOAc: 9/1) = 0.5. ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 1.32 (s, 9H, H₁₇), 3.55 (s, 2H, H₅), 3.64 (d, 2H, H₂, J = 6.1 Hz), 3.80 (s, 2H, H₆), 5.23

(s, 2H, H₁₅), 5.88 (t, 1H, H₃', J = 6.1 Hz), 7.21-7.33 (m, 5H, H_{arom}), 7.41-7.47 (m, 3H, H_{arom}), 7.72-7.77 (m, 1H, H₇), 7.91 (d, 1H, H₅, J = 8.4 Hz), 8.07-8.10 (m, 1H, H₈), 8.38-8.42 (m, 2H, H_{arom}). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 31.2 (C₁₇), 34.8 (C₁₆), 59.8-60.2 (C₅+C₂·), 60.3 (C₆·), 63.5 (C₁₅), 115.1 (C_{5a}), 123.4 (C_{arom}), 125.4 (2C_{arom}), 125.6 (C_{arom}), 126.2 (C_{arom}), 127.1 (C_{arom}), 127.9 (C_{arom}), 128.2 (2C_{arom}), 128.4 (2C_{arom}), 128.7 (2C_{arom}), 133.5 (C₃·), 135.4 (C₉), 136.9 (C₇·), 138.8 (C₄·), 152.1 (C_{8a}), 153.8 (C₁₂), 160.0 (C₂), 166.2 (C₄). ES-HRMS [M+H]⁺ calcd. (C₃₀H₃₂N₃O)⁺: 450.2501, found: 450.2552.

6f: 4-((1-benzyl-2,5-dihydro-1H-pyrrol-3-yl)methoxy)-2-(4-chlorophenyl)benzopyrimidine

White solid; yield: 65%; mp: 123-125 °C; R_f (cyclohexane/ EtOAc: 9/1) = 0.5. ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 3.52-3.55 (m, 2H, H₅·), 3.60-3.63 (m, 2H, H₂·), 3.78 (s, 2H, H₆·), 5.20 (s, 2H, H₁₅), 5.87-5.88 (m, 1H, H₃·), 7.19-7.31 (m, 5H, H_{arom}), 7.37-7.47 (m, 3H, H_{arom}), 7.72-7.78 (m, 1H, H₇), 7.89 (d, 1H, H₅, J = 8.4 Hz), 8.08 (d, 1H, H₈, J = 8.1 Hz), 8.41-8.45 (m, 2H, H_{arom}). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 59.8 (C₅·), 60.2 (C₂·), 60.4 (C₆·), 63.7 (C₁₅), 115.2 (C_{5a}), 123.5 (C_{arom}), 125.8 (C_{arom}), 126.7 (C_{arom}), 127.1 (C_{arom}), 127.9 (C_{arom}), 128.4 (2C_{arom}), 128.6 (2C_{arom}), 128.7 (2C_{arom}), 129.7 (2C_{arom}), 133.7 (C₃·), 136.5 (C₉), 136.6 (C₁₂), 136.7 (C₇·), 139.1 (C₄·), 151.8 (C_{8a}), 158.8 (C₂), 166.3 (C₄). ES-HRMS [M+H]⁺ calcd. (C₂₆H₂₃ClN₃O)⁺: 428.1484, found: 428.1534.

6g: 4-((1-benzyl-2,5-dihydro-1H-pyrrol-3-yl)methoxy)-2-(4-fluorophenyl)benzopyrimidine

White solid; yield: 81%; mp: 96-98 °C; R_f (cyclohexane/ EtOAc: 9/1) = 0.5. ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 3.53-3.55 (m, 2H, H₅·), 3.60-3.63 (m, 2H, H₂·), 3.79 (s, 2H, H₆·), 5.21 (s, 2H, H₁₅), 5.87-5.88 (m, 1H, H₃·), 7.09 (t, 2H, H_{arom}, J = 8.7 Hz), 7.18-7.31 (m, 5H, H_{arom}), 7.41-7.44 (m, 1H, H₆), 7.72-7.77 (m, 1H, H₇), 7.88 (d, 1H, H₅, J = 8.3 Hz), 8.07-8.10 (m, 1H, H₈), 8.46-8.51 (m, 2H, H_{arom}). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 59.8(C₅· or C₂·), 60.2 (C₅· or C₂·), 60.4 (C₆·), 63.7 (C₁₅), 115.0 (C_{arom}), 115.3 (d, J = 21.6 Hz, C₁₁+ C₁₃), 123.5 (C_{arom}), 125.8 (C_{arom}), 126.5 (C_{arom}), 127.1 (C_{arom}), 127.8 (C_{arom}), 128.4 (2C_{arom}), 128.7 (2C_{arom}), 130.5 (d, J = 8.6 Hz, C₁₀+ C₁₄), 133.7 (C_{arom}), 134.2 (d, J = 3 Hz, C₉), 136.8 (C₄·), 139.0 (C_{arom}), 151.9 (C_{8a}), 158.9 (C₂), 164.6 (d, J = 250.2 Hz, C₁₂), 166.3 (C₄). ES-HRMS [M+H]⁺ calcd. (C₂₆H₂₃FN₃O)⁺: 412.1780, found: 412.1833.

6h: 4-((1-benzyl-2,5-dihydro-1H-pyrrol-3-yl)methoxy)-2-(3-bromophenyl)benzopyrimidine

White solid; yield: 70%; mp: 99-101 °C; R_f (cyclohexane/ EtOAc: 9/1) = 0.5. ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 3.54-3.56 (m, 2H, H₅·), 3.61-3.64 (m, 2H, H₂·), 3.80 (s, 2H, H₆·), 5.22 (s, 2H, H₁₅), 5.88-5.89 (m, 1H, H₃·), 7.21-7.33 (m, 6H, H_{arom}), 7.44-7.50 (m, 1H, H₆), 7.53-7.56 (m, 1H, H₇), 7.74-7.80 (m, 1H, H_{arom}), 7.92 (d, 1H, H₅, J = 8.3 Hz), 8.09-8.12 (m, 1H, H₈), 8.41-8.45 (m, 1H, H_{arom}), 8.64 (t, 1H, H₁₀, J = 1.7 Hz). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 59.8 (C₅·), 60.1 (C₂·), 60.4 (C₆·), 63.8 (C₁₅), 115.3 (C_{5a}), 122.7 (C₁₁), 123.5 (C_{arom}), 125.8 (C_{arom}), 126.8 (C_{arom}), 126.9 (C_{arom}), 127.1 (C_{arom}), 128.0 (C_{arom}), 128.4 (2C_{arom}), 128.7 (2C_{arom}), 129.9

```
(C_{arom}), 131.4 (C_{arom}), 133.3 (C_{arom}), 133.7 (C_{3'}), 136.7 (C_{9}), 139.1 (C_{7'}), 140.1 (C_{4'}), 151.8 (C_{8a}), 158.4 (C_{2}), 166.4 (C_{4}). ES-HRMS [M+H]<sup>+</sup> calcd. (C_{26}H_{23}BrN_{3}O)^+: 472.0971, found: 472.1021.
```


¹H NMR spectrum of compound 3a

¹H NMR spectrum of compound 3c

¹H NMR spectrum of compound 3e

¹H NMR spectrum of compound 3g

S. 31

¹H NMR spectrum of compound 4b

¹H NMR spectrum of compound 4d

¹H NMR spectrum of compound 4e

¹H NMR spectrum of compound 4g

¹H NMR spectrum of compound 4h

¹H NMR spectrum of compound 5a

¹H NMR spectrum of compound 5f

¹H NMR spectrum of compound 6a

¹H NMR spectrum of compound 6b

¹H NMR spectrum of compound 6f

¹³C NMR spectrum of compound 6h