Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information

Thiophene-based Mesoporous Covalent Organic Framework for Efficient Iodine Vapor Capture

Chuanxue You^{a,b}, Yuxin Yao^{a,b}, Shengnan Qi^{a,c}, Tianyu Zhou^{a,d}, Xin Ren^{*a,c}, Yunchao Ma^{*a,b} and Chunbo Liu*a,d

^a Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, Jilin Normal University, Changchun 130103, P.R. China.

^b College of chemistry, Jilin Normal University, Siping 136000, P.R. China.

^c College of Engineering, Jilin Normal University, Siping 136000, P.R. China.

^d Jilin Joint Technology Innovation Laboratory of Developing and Utilizing Materials of Reducing Pollution and Carbon Emissions, College of Engineering, Jilin Normal University, Siping, 136000, China

Section S1. Experimental

S1.1 Measurements

PXRD patterns were collected on a Empypean DY01610 Advance diffractometer operated at 40 kV and 35 mA using Cu Kα radiation and in the range of 2-40°, the structure of COFs was simulated by Material Studio Software. **Fourier transform infrared (FT-IR)** spectra in the range of 4000 to 500 cm⁻¹ were collected by Universal ATR accessory. N_2 **adsorption and desorption** of COFs were performed at 77 K using ASAP 2460, Micromeritics Instrument Corp, USA. Pore size distributions and pore volumes were derived from the adsorption isotherms. **X-ray photoelectron spectroscopy (XPS)** spectra were obtained by the Kratos axis supraTM of Shimadzu. **Solid state ¹³C NMR (NMR)** spectra of all the samples were collected on a Bruker Advance III instrument with AS500 magnet equipped with a cryoprobe (300 MHz). **Scanning electron microscopy (SEM)** measurements was performed on a JEOL 8100 scanning electron microscope at an acceleration voltage of 10 kV. **Thermogravimetric analysis (TGA)** was carried out on the DTG-60AH from 30 to 800 °C under N² with a heating rate of 10 °C min-1 . **The ultraviolet−visible diffuse reflectance spectroscopy (UV−vis DRS)** was conducted on Shimadzu UV-2600 tested from 220 to 800 nm.

S1.2 Materials

All starting materials and solvents were obtained from commercial sources and used without further purification.

4',4''',4'''''-(1,3,5-Triazine-2,4,6-triyl)tris(([1,1'-biphenyl]-4-amine)) (TTPB,97%), Thieno [3,2-b]thiophene-2,5-dicarboxaldehyde (TTDC, 97%), and [1,1':4',1":3",1"':4"',1"'-Quinquephenyl]-4,4''''-diamine, 5''-(4'-amino[1,1'-biphenyl]-4-yl)-(QDAB, 95%) were purchased from Shanghai Haohong Scientific Co., Ltd. N, N−dimethylformamide (DMF, 99.99%), tetrahydrofuran (THF, 99.99%), acetic acid (99%), 1,4-dioxane (99.8%), dichloromethane (98%), n-butanol(99%), methanol, acetone, iodine, bromatum kalium (KBr, 99%) were purchased from J&K Scientific or Sinopharm. The solvents mentioned above are anhydrous solvents.

S1.3 The adsorption experimental of I² vapor

The JLNU-COFs were activated with anhydrous methanol and acetone exchange solvents for 3 times and calcined at 80 °C for 4 h under nitrogen atmosphere to ensure the removal of water molecules from them. Then, an open vial (2 mL) containing the COF sample (20.0 mg) was placed in a large vial (10 mL) containing iodine (1 g), and the large vial was sealed and stored in a constant temperature oven at 75 °C. After a period of time, the vial containing the COF sample was weighed and placed back into the vial containing iodine. The vial was sealed and placed back into the oven at 75°C to continue adsorption until the mass of the vial containing the adsorbent remained constant. The iodine uptake capacity of JLNU-COFs was calculated according to equation (1).

$a=(m_2-m_1)/m_1(1)$

a (g g^{-1}) is the iodine adsorption capacity, m_1 (g) and m_2 (g) are the mass of the sample before and after iodine capture.

S1.4 Iodine release and recycling

JLNU-COFs absorbing iodine (4 mg) were immersed in ethanol (40 mL) and kept for a certain time. Then the absorbance of the supernatant at different time intervals was determined by UV-Vis spectrophotometer.

The $I_2(\partial U)$ LNU-COFs were added to 50 mL of ethanol in a vial under a constant temperature water bath at 25°C, and the ethanol was changed every 2 h until the solution was colourless. The COFs samples were filtered, ethanol washed, and dried under vacuum at 100°C for 6 h, and then repeated in the next cycle.

S2.1 PXRD patterns

Fig. S1. Vertical projection view (up) of the structure for (a) AA stacking and (b) AB stacking of JLNU-312.

Fig. S2. Comparison of PXRD patterns for JLNU-312: calculated based on the AA stacked (black), AB stacked (red), and experiment (blue).

Fig. S3. Vertical projection view (up) of the structure for (a) AA stacking and (b) AB stacking of JLNU-313.

Fig. S4. Comparison of PXRD patterns for JLNU-313: calculated based on the AA stacked (black), AB stacked (red), and experiment (pink).

Fig. S5. Comparison of PXRD patterns for JLNU-312 (blue) and JLNU-313 (pink).

Fig. S6. Solid-state ¹³C NMR spectrum of JLNU-312.

Fig. S7. Solid-state ¹³C NMR spectrum of JLNU-313.

S2.3 Gas adsorption isotherms

Fig. S8. BET plot of JLNU-312 calculated from N₂ adsorption isotherm at 77 K. (Before the test, the material was soaked in acetone for 8 h and then activated by vacuum heating (100 ℃) for 8 h.)

Fig. S9. BET plot of JLNU-313 calculated from N₂ adsorption isotherm at 77 K. (Before the test, the material was soaked in acetone for 8 h and then activated by vacuum heating (100 ℃) for 8 h.)

was soaked in acetone for 8 h and then activated by vacuum heating (100 ℃) for 8 h.)

Fig. S11. The pore size distribution of JLNU-313. (Before the test, the material was soaked in acetone for 8 h, and then activated by vacuum heating (100 ℃) for 8 h.)

Fig. S12. N₂ adsorption-desorption isotherm of JLNU-312 (blue) and JLNU-313 (pink). (Before the test, the material was soaked in acetone for 8 h and then activated by heating (100 °C) under N_2 flow for 8 h.)

Fig. S13. BET plot of JLNU-312 calculated from N₂ adsorption isotherm at 77 K. (Before the test, the material was soaked in acetone for 8 h and then activated by heating (100 °C) under N_2 flow for 8 h.)

Fig. S14. BET plot of JLNU-313 calculated from N₂ adsorption isotherm at 77 K. (Before the test, the material was soaked in acetone for 8 h and then activated by heating (100 °C) under N_2 flow for 8 h.)

Fig. S15. The pore size distribution of JLNU-312. (Before the test, the material was soaked in acetone for 8 h and then activated by heating (100 °C) under N_2 flow for 8 h.)

Fig. S16. The pore size distribution of JLNU-313. (Before the test, the material was soaked in acetone solvent for 8 h and then activated by heating (100 °C) under N_2 flow for 8 h.)

S2.4 TGA

Fig. S17. TGA (blue) and DTG (red) curves of JLNU-312 under N₂.

Fig. S18. TGA (pink) and DTG (red) curves of JLNU-313 under N₂.

Fig. S19. TGA (black) and DTG (red) curves of QDAB under N₂.

Fig. S20. TGA (black) and DTG (red) curves of TTPB under N₂.

Fig. S21. TGA (black) and DTG (red) curves of TTDC under N₂.

S2.5 Stability test

Fig. S22. PXRD patterns of JLNU-312 after 24 hours treatment in different organic solvents.

Fig. S23. PXRD patterns of JLNU-313 after 24 hours treatment in different organic solvents.

S2.6 Iodine uptake and release performance

Figure S24. The iodine releasing process of I₂@JLNU-312 from ethanol solution.

Figure S25. The iodine releasing process of I₂@JLNU-313 from ethanol solution.

Fig. S26. PXRD of JLNU-312 before and after 5 cycles of iodine uptake.

Fig. S27. PXRD of JLNU-313 before and after 5 cycles of iodine uptake.

Fig. S28. FT-IR of JLNU-312 before and after 5 cycles of iodine uptake.

Fig. S29. FT-IR of JLNU-313 before and after 5 cycles of iodine uptake.

Fig. S30. PXRD patterns of JLNU-312 and I₂@JLNU-312.

Fig. S31. PXRD patterns of JLNU-313 and I₂@JLNU-313.

Fig. S32. FT-IR of JLNU-312 and I₂@JLNU-312.

Fig. S33. FT-IR of JLNU-313 and I₂@JLNU-313.

Fig. S34. XPS spectra of JLNU-312 and I₂@JLNU-312

Fig. S35. XPS spectra of N 1s in JLNU-312 and I_2 (∂ JLNU-312.

Fig. S36. XPS spectra of S 2p in JLNU-312 and I₂@JLNU-312

Fig. S37. XPS spectra of JLNU-313 and I₂@JLNU-313

Fig. S38. XPS spectra of N 1s in JLNU-313 and $I_2@JLNU-313$.

Fig. S39. XPS spectra of S 2p in JLNU-313 and $I_2@$ JLNU-313.

Fig. S40. Raman spectra of JLNU-312 and I₂@JLNU-312.

Fig. S41. Raman spectra of JLNU-313 and I₂@JLNU-313.

Section S3. Unit cell parameters and fractional atomic coordinates

Table S1. Unit cell parameters and fractional atomic coordinates for calculated JLNU-312

Space group		$P6/m$ (No. 175)		
		$a = b = 54.6173$ Å, c = 3.5434 Å,		
	Calculated unit cell		$\alpha = \beta = 90^{\circ} \gamma = 120^{\circ}$	
Pawley refinement		$Rop = 4.44\%$ and $Rp = 3.41\%$		
Atom	$\mathbf X$	y	$\mathbf{Z}% ^{T}=\mathbf{Z}^{T}\times\mathbf{Z}^{T}$	
N1	0.01327	-0.01537	0.01049	
C2	0.0288	0.01334	0.01049	
C ₃	0.05995	0.02777	0.01049	
C4	0.07602	0.05739	0.01049	
C ₅	0.10555	0.07107	0.01049	
C6	0.11957	0.0554	0.01049	
C7	0.10339	0.02573	0.01049	
C8	0.07386	0.01205	0.01049	
C9	0.15089	0.06991	0.01049	
C10	0.16492	0.05423	0.01049	
C11	0.19446	0.0679	0.01049	
C12	0.21048	0.09743	0.01049	
C13	0.19661	0.11325	0.01049	
C14	0.16708	0.09958	0.01049	
N15	0.2407	0.11079	0.01049	
C16	0.288	0.15074	0.01049	
C17	0.37936	0.18294	0.01049	
C18	0.45688	0.23625	0.01049	
C19	0.47075	0.22043	0.01049	

Space group		$P6/m$ (No. 175)	
Calculated unit cell		$a = b = 54.1818$ Å, c = 6.1385 Å,	
		$\alpha = \beta = 90^{\circ} \gamma = 120^{\circ}$	
Pawley refinement		$R\omega p = 5.90\%$ and $Rp = 4.21\%$	
Atom	$\mathbf X$	$\mathbf y$	Z
C1	0.01359	-0.01573	0.00791
C2	0.02967	0.01375	0.00791
C ₃	0.06082	0.02819	0.00791
C ₄	0.07692	0.0577	0.00791
C ₅	0.10631	0.07131	0.00791
C6	0.12026	0.05573	0.00791
C7	0.10416	0.02622	0.00791
C8	0.07478	0.0126	0.00791
C9	0.15143	0.07018	0.00791
C10	0.16539	0.05458	0.00791
C11	0.19479	0.06819	0.00791
C12	0.21073	0.09758	0.00791
C13	0.19692	0.11332	0.00791
C14	0.16753	0.0997	0.00791
N15	0.24081	0.11087	0.00791
C16	0.28787	0.15064	0.00791
C17	0.37879	0.18269	0.00791
N18	0.42586	0.22246	0.00791
C19	0.45594	0.23576	0.00791
C20	0.46975	0.22002	0.00791
C21	0.49913	0.23363	0.00791
C22	0.51524	0.26316	0.00791

Table S2. Unit cell parameters and fractional atomic coordinates for calculated JLNU-313

Table S3. Iodine adsorption capacities of different adsorbents.

Section S4. References

- [1] Y. W. Huang, Z. W. Yu, Q. Y. Zhang and F. Luo, *Sci. China-Mater.,* 2023, **66**, 2339- 2345.
- [2] J. H. Li, H. X. Zhang, L. Y. Zhang, K. Wang, Z. K. Wang, G. Y. Liu, Y. L. Zhao and Y. F. Zeng, *J. Mater. Chem. A*, 2020, **8**, 9523-9527.
- [3] Q. Y. Niu, Q. X. Cui, X. T. Meng, P. Zhang, Y. N. Zhou, H. Fu, B. W. Ma, N. Qin and L. P. Zhai, *New J. Chem.*, 2023, **47**, 7642-7647.
- [4] Y. Zhu, Y. Qi, X. Guo, M. Zhang, Z. Jia, C. Xia, N. Liu, C. Bai, L. Ma and Q. Wang, *J. Mater. Chem. A,* 2021, **9**, 16961–16966.
- [5] S. An, X. Zhu, Y. He, L. Yang, H. Wang, S. Jin, J. Hu and H. Liu, *Ind. Eng. Chem. Res.,* 2019, 58 10495–10502.
- [6] Q. Jiang, H. L. Huang, Y. Z. Tang, Y. X. Zhang and C. L. Zhong, *Ind. Eng Chem Res.,* 2018, **57**, 15114-15121.
- [7] X. Qian, B. Wang, Z. Q. Zhu, H. X. Sun, F. Ren, P. Mu, C. H. Ma, W. D. Liang and A. Li, *J. Hazard. Mater.,* 2017, **338**, 224-232.
- [8] S. Y. Zhang, X. H. Tang, Y. L. Yan, S. Q. Li, S. R. Zheng, J. Fan, X. L. Li, W. G. Zhang and S. L. Cai, *ACS Macro Lett.,* 2021, **10**, 1590-1596.
- [9] H. Li, D. Zhang, K. Cheng, Z. Li and P.-Z. Li, *ACS Appl. Nano Mater.*, 2023, **6**, 1295- 1302.
- [10] Y. L. Zhu, Y. J. Ji, D. G. Wang, Y. Zhang, H. Tang, X. R. Jia, M. Song, G. P. Yu and

G. C. Kuang, *J. Mater. Chem. A*, 2017, **5**, 6622-6629.

- [11] Y. Li, G. Cui, X. Cai, G. Yun, Y. Zhao, L. Jiang, S. Cui, J. Zhang, M. Liu, W. Zeng, Z. Wang and J. Jiang, *Chem-Eur. J.,* 2024, **30**.
- [12] W. Z. She, Q. L. Wen, H. C. Zhang, J. Z. Liu, R. S. Li, J. Ling and Q. E. Cao, *ACS Appl. Nano Mater.*, 2023, **6**, 18177-18187.
- [13] Y. H. Sun, S. A. Song, D. H. Xiao, L. F. Gan and Y. R. Wang, *ACS Omega*, 2020, **5**, 24262-24271.
- [14] D. Y. Chen, Y. Fu, W. G. Yu, G. P. Yu and C. Y. Pan, *Chem. Eng. J.,* 2018, **334**, 900- 906.
- [15] D. F. Sava, T. J. Garino and T. M. Nenoff, *Ind. Eng Chem Res.,* 2012, **51**, 614-620.
- [16] Y. Q. Li, Y. R. Li, Q. H. Zhao, L. Li, R. Chen and C. Y. He, *Cellulose*, 2020, **27**, 1517-1529.