Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

SUPPLEMENTARY INFORMATION

Electrochemical measurements

Figure S1. Electrochemical measurements for dyads in H₂O/CH₃CN (4:1), 0.1 M tetrabutylammonium hexafluorophosphate

[Fe^{II}(L₅²)Cl]⁺ catalyst excited state

Figure S2. Transient absorption of $[Fe^{II}(L_s^2)CI]^+$ catalyst. Excitation at 355 nm. Laser energy: 8 mJ. $A_{355} = 0.20$. Solvent: CH_3CN

Emission kinetic analysis

Emission values given in Table 2 have been obtained fitting the experimental decays with the biexponential decay equation given below:

$$A = A_1 e^{-t/\tau_1} + A_2 e^{-t/\tau_2}$$

The values τ_1 and τ_2 have been reported in Table, together with percentages calculated as

$$\frac{A_1}{A_1 + A_2} \times 100$$

and

$$\frac{A_2}{A_1 + A_2} \times 100$$

Chromophore-catalyst complexes gated emission spectra

Figure S3. Gated (gate = 10 ns) emission spectra for the different dyads, obtained 10 ns after excitation with 460 nm laser pulse (10 mJ energy) in a H_2O/CH_3CN (4:1) mixture.

Transient absorption kinetics

Figure S4. Transient kinetics obtained for the dyads at indicated wavelengths in H_2O/CH_3CN (4:1). Optically matched absorption at 460 nm (A460 = 0.40). Size of the signals agree with the excited state lifetimes

PET in the presence of 20 mM MV²⁺

Figure S5. Differential transient absorption spectra in the presence of 20 mM MV^2 + for the different compounds in H_2O/CH_3CN (4:1) argon-purged solution. Solutions excited at 460 nm with a laser energy ~10 mJ, absorption at excitation wavelength: 0.40

Simulations

All the parameters resulting from simulations are given in the table below: k_{ET} is the rate constant for interaction with MV^{2+} , k_{IET} is the rate for Fe^{II} oxidation, k_{IET1} the recombination rate between MV^{*+} and Ru^{III}, while k_{IET2} is that between MV^{*+} and Fe^{II}. Φ_{IET} is the yield for the intramolecular oxidation of Fe^{III}, obtained as the ration of Fe^{III} maximum concentration over the Ru^{III} concentration.

Compound	<i>k_{ET}</i> / M ⁻¹ s ⁻¹	<i>k_{IET}</i> / s ⁻¹	<i>k_{REC1}</i> / M ⁻¹ s ⁻¹	<i>k_{rec2}/</i> M ⁻¹ s ⁻¹	Φ_{IET}
1	3.2 x 10 ⁸	3100	2.2 x 10 ⁹	2.3 x 10 ⁹	0.55
2	3.2 x 10 ⁸	620	2.0 x 10 ⁹	2.0 x 10 ⁹	0.24
3	3.5 x 10 ⁷	11000	2.7 x 10 ⁹	2.4 x 10 ⁹	0.87
4	3.5 x 10 ⁷	8300	2.6 x 10 ⁹	2.3 x 10 ⁹	0.75

Table S1. Summary of the simulations results.

Fits results

Figure S6. Global fit obtained for complex **1**: left, 605 nm; right 450 nm

Figure S7. Time-evolution of concentration of different species for ${\bf 1}$ and ${\rm MV}^{2+}$

Figure S 8. Global fit obtained for complex 2: left, 605 nm; right 450 nm

Complex 2

Figure S9. Time-evolution of concentration of different species for ${\bf 2}$ and ${\rm MV}^{2+}$

Figure S10. Global fit obtained for complex **3**: left, 605 nm; right 470 nm

Figure S11. Time-evolution of concentration of different species for **3** and MV^{2+}

Figure S12. Global fit obtained for complex 4: left, 605 nm; right 480 nm

Figure S13. Time-evolution of concentration of different species for **4** and MV^{2+}

Activation energy plots

Values of λ and H_{AB} have been obtained from Marcus equation 16

$$k_{IET} = \frac{2}{\hbar} H_{AB}^2 \frac{1}{\sqrt{4\pi k_B \lambda T}} \times e^{-\frac{(\Delta G^0 + \lambda)^2}{4\lambda k_B T}}$$

Where \hbar is the reduced Plank constant (6.58 × 10⁻¹⁶ eV s⁻¹) and k_B is the Boltzmann constant (0.86 × 10⁻⁴ eV). By plotting ln ($k_{IET} \times T^{1/2}$) vs 1/T, the slope of the linear fit corresponds to the activation energy E_A

$$E_A = \frac{\left(\Delta G^0 + \lambda\right)^2}{4\lambda k_B}$$

and the intercept to

$$ln(\frac{H_{AB}^2}{h}\sqrt{\frac{4\pi}{\lambda k_B}})$$

Figure S14. Activation energy plots for complexes 1, 2 and 4 in H_2O/CH_3CN (4:1) in the presence of 20 mM MV^{2+}