Electronic Supplementary Information

In Situ Synthesis of NiCo₂O₄/Carbon Nanocomposites: Play of Carbon Content and Symmetric/Asymmetric Device Configuration on Supercapacitor Performance

Raji Yuvaraja,^a Sankar Sarathkumar,^a Venkatesan Gowsalya,^a Sorna Pandian Anitha Juliet,^a Selvakumar Veeralakshmi,^b Siva Kalaiselvam,^b Shamima Hussain,^c Selvan Nehru*^a

^aDepartment of Physical Chemistry, University of Madras, Guindy Campus, Chennai - 600025, Tamil Nadu, India ^bCentre for Industrial Safety, Anna University, Chennai - 600025, Tamil Nadu, India

^cUGC-DAE Consortium for Scientific Research, Kalpakkam Node, Kokilamedu - 603104, Tamil Nadu, India

*Corresponding author's email: nehruchem@gmail.com

Fig. S1 EDS analysis of the elements present in nanomaterials: (a) $NiCo_2O_4$; (b) CNS and (c) $NiCo_2O_4/C$ (D2).

Fig. S2 CV curves at different scan rates: (a) $NiCo_2O_4/C$ (D1); (b) $NiCo_2O_4/C$ (D5); (c) $NiCo_2O_4/C$ (D10) and (d) Impact of carbon mole ratio with respect to Ni^{2+} in $NiCo_2O_4/C$ (Dx) based nanocomposites.

Fig. S3 GCD curves at different current densities: (a) $NiCo_2O_4/C$ (D1); (b) $NiCo_2O_4/C$ (D5); (c) $NiCo_2O_4/C$ (D10) and (d) Ragone plot of symmetric and asymmetric SCs.

S. No.	Electrode Materials	Specific capacitance		
		(F g ⁻¹)		
1	NiCo ₂ O ₄	307		
2	CNS	52		
3	NiCo ₂ O ₄ /C (D1)	239		
4	NiCo ₂ O ₄ /C (D2)	736		
5	$NiCo_2O_4/C$ (D5)	565		
6	NiCo ₂ O ₄ /C (D10)	167		

Table S1 Three electrode specific capacitance of NiCo₂O₄, CNS and NiCo₂O₄/C based nanocomposites at current density 1 A g^{-1} using 3 M KOH electrolyte.

S.	Material	Methodology	Electrolyte	Specific	Cyclic	Ref.
No.				capacitance	stability	
				$(F g^{-1} or + F cm^{-2})$	(capacity	
1	Nitrogen-doned carbon	In situ	3 M KOH	<u> </u>	93 5% after	1
1	capsules@NiO/NiCo ₂ O ₄	calcination	5 101 1011	007	8000 cycles	1
2	$Carbon/NiCo_2O_4$ composite	Hvdrothermal	3 М КОН	204.3	90.35% after	2
	2 7 1	5	-		3000 cycles	
3	NiCo ₂ O ₄ /carbon-active	Hydrothermal	6 M KOH	273.5	96% after	3
	composite				3000 cycles	
4	Carbon nanotube@	One-pot co-	6 M KOH	210	92.70% after	4
	NiCo ₂ O ₄	precipitation			2500 cycles	
5	Porous marigold micro-	Chemical bath	6 M KOH	530	90.5% after	5
	flower like NiCo ₂ O ₄	deposition			3000 cycles.	
6	Submicron-sized NiCo ₂ O ₄	Sol-gel method	1 M KOH	217	96.3% after	6
					600 cycles	
7	$NiCo_2O_4@g-C_3N_4(C)$	Hydrothermal	3 M KOH	325.7	93.6% after	7
_					2000 cycles	_
8	$NiCo_2O_4$ /carbon cloth	Hydrothermal	6 M KOH	249.7	63.3% after	8
0		T 11.	1 1 1 1 0 11	000 7	1000 cycles	0
9	$N_1Co_2O_4$ nanospheres	Laser ablation	І М КОН	299.7	90.4% after	9
		in liquid and			10,000 cycles	
10	Deleverynele deceneted	hydrothermal		401	(2, 6)/ often	10
10	Polypyrrole-decorated	Electrochemical	0 M KOH	421	03.0% after 2000 arealas	10
	Stree O_3 -o perovskites on	deposition			5000 cycles	
11	Fe-substituted SrCoO.	Solid_state	1 M NaOH	527	85 7% after	11
11	nerovskites	sintering		521	5000 cycles	11
12	Fe ₂ Mo ₂ C/Mo ₂ C@ carbon	Hydrothermal	1 М КОН	202.3	73 9 % after	12
14	nanotubes	rrydrothermar		202.5	4000 cycles	12
13	Cobalt vanadate on CoO	Multi-step	3 М КОН	*7.58	84.6% after	13
	urchin-like microspheres	process			5000 cvcles	
14	$NiCo_2O_4/C$ (D2)	In situ	3 M KOH	736	84.9% after	This
	/	hydrothermal			1000 cycles	report

Table S2 Comparison of the supercapacitor performance of $NiCo_2O_4/C$ (D2) nanocomposite with similar and some advanced electrode materials.

References

- 1. Z. Guo, Y. Zhao, J. Mu, S. Li, F. Li, J. Wang, H. Yang, J. Mu, M. Zhang Ceram. Int., 49 (2023) 19652-19663.
- 2. N.V. Nguyen, T.V. Tran, S.T. Luong, T.M. Pham, K.V. Nguyen, T.D. Vu, H.S. Nguyen, N.V. To, ChemistrySelect, 5 (2020) 7060-7068.
- J. Xu, F. Liu, X. Peng, J. Li, Y. Yang, D. Jin, H. Jin, X. Wang, B. Hong, ChemistrySelect, 2, (2017) 5189-5195.
- 4. M. Shahraki, S. Elyasi, H. Heydari, N. Dalir, J. Electron. Mater., 46, (2017) 4948-4954.

- G.P. Kamble, A.A. Kashale, A.S. Rasal, S.A. Mane, R.A. Chavan, J.-Y. Chang, Y.-C. Ling, S.S. Kolekar, A.V. Ghule, RSC Adv., 11, (2021) 3666-3672.
- 6. Y. Q. Wu, X. Y. Chen, P. T. Ji and Q. Q. Zhou, Electrochim. Acta, 56, (2011) 7517-7522.
- Q.Y. Shan, B. Guan, J.M. Zhang, F. Dong, X.Y. Liu, Y.X. Zhang, J. Nanosci. Nanotechnol., 19, (2019) 73-80.
- S. Wu, Q. Liu, F. Xue, M. Wang, S. Yang, H. Xu, F. Jiang, J. Wang, J. Mater. Sci.: Mater. Electron., 28, (2017) 11615-11623.
- 9. X. Liu, J. Wang and G. Yang, Appl. Phys. A, 123, (2017) 469.
- 10. Y. Qiao, J. He, Y. Zhou, S. Wu, X. Li, G. Jiang, G. Jiang, M. Demir and P. Ma, ACS Applied Materials & Interfaces, 2023, 15, 52381-52391.
- 11. B. Yuan, Z. Su, K. Chen, J. Wang, B. Chen, S. Jiang, J. Yan, C. Zhang, A. Xie and S. Luo, *Diamond Relat. Mater.*, 2023, **136**, 110079.
- 12. Y. Jiang, X. Li, F. Liu, B. Wang, W. Zhou, S. Dong and X. Fan, *Appl. Surf. Sci.*, 2022, **576**, 151801.
- Z. Jiao, Y. Chen, M. Du, M. Demir, F. Yan, Y. Zhang, C. Wang, M. Gu, X. Zhang and J. Zou, *J. Alloys Compd.*, 2023, **958**, 170489.