Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supplementary Information

A fluorescent biosensor based on boronic acid functionalized carbon

dots for identification and sensitive detection of Gram-positive

bacteria

Xiaoqing Zhang ^a, Yue Ma ^a, Lingling Zhao ^a, Mei Liu ^{a *}

^a College of Food Engineering and Nutritional Science, Shaanxi Normal

University, Xi'an 710119

*Corresponding author

E-mail: liumei@snnu.edu.cn

Phone: 86-29-85310517, Fax: 86-29-85310517

Fig. S1 Photographs of S. aureus(A) and E. coli cell pellets (B) before and after B-CDs treatment under 365 nm UV light; (C) Comparison of the ability of B-CDs and e-CDs to recognize S. aureus.

Fig. S2 The ability of B-CDs to recognize *S. aureus and E. coli* in different pH environment.

To investigate the effect of B-CDs on the recognition of Gram-positive bacteria in common pH environment, the fluorescence intensity of the precipitated resuspension was measured by incubating B-CDs with the same concentrations of *S. aureus* and *E. coli* at pH 7.0-9.0, respectively. Results in Fig. S2 demonstrated that pH environment had no significant influence on the recognition of B-CDs to Gram-positive bacteria.

Fig. S3 The effect of different dosage of precursor substance (3-APBA)

on the ability to detect S. aureus.

Fig. S4 The effect of B-CDs synthesis temperature on its ability to detect

S. aureus.

Fig. S5 Influence of the mixed volume ratio of bacterial suspension and

B-CDs on the detection effect.

Fig. S6 Influence of the incubation time of bacterial suspension with B-

CDs on the detection effect.

Detection	Linear Range	LOD	Reference
method	(CFU/mL)	(CFU/mL)	
Immunochromatographic assay	10 ² -×10 ⁶	10 ²	1
Colorimetric assay	10-106	10	2
Electrochemical assay	101-107	10	3
Fluorescence method	5.6×10 ¹ -5.6×10 ⁶	22	4
Fluorescence method	$10^4 - 10^8$	2.24×10 ²	5
Fluorescence method	$2.7 \times 10^{2} - 2.7 \times 10^{6}$	2.7×10 ²	6
Fluorescence method	10–106	10	7
Fluorescence method	2.6×10 ¹ -5.2×10 ⁶	7	This work

 Table S1 Comparison of the developed biosensor with other reported

 methods for the determination of S. aureus.

References

- C. Deng, H. Li, S. Qian, P. Fu, H. Zhou, J. Zheng and Y. Wang, *Anal. Chem.*, 2022, 94, 11514-11520.
- 2 H. Zhang, S. Yao, X. Song, K. Xu, J. Wang, J. Li, C. Zhao and M. Jin, *TALANTA*, 2021, **232**.
- 3 B. Chen, Q. Tao, F. Qiao, Y. Fei, Y. Liu, X. Xiong and S. Liu, *Food Chem.*, 2022, **383**.
- 4 Q. Ouyang, L. Wang, W. Ahmad, Y. Yang and Q. Chen, J. Agric. Food Chem., 2021, **69**, 9947-9956.
- 5 Y. Xu, H. Zheng, J. Sui, H. Lin and L. Cao, *FOODS*, 2023, **12**.
- Z. Wang, X. Feng, F. Xiao, X. Bai, Q. Xu and H. Xu, *Microchem J.*, 2022, 178, 107379.
- 7 S. Yao, C. Zhao, M. Shang, J. Li and J. Wang, FOOD AND CHEMICAL TOXICOLOGY, 2021, 150.