Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information:

Co₃O₄-CuO bimetallic catalyst activated PMS to degrade LEV in wastewater: The existence of dual degradation

mechanisms

Xiaoning Jia^{a,*}, HaiXin He^a, Xia Zhao^a, Yabin Li^a, Chunxiang Wang^a, Yanhui Yang^a, Jingwen Wu^a

^a College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China.

*Corresponding author.

Xiaoning Jia

E-mail address: jxn@lut.edu.cn

Fig S1 The schematic illustration of synthesis CCO.

Fig.S2 Co and Cu leaching of CCO/PMS/LEV. Conditions: [LEV] = 20 mg/L, [PMS] = 0.8 g/L, [Catalyst] = 0.2 g/L, T = 298 K and initial solution pH 7.

Fig.S3 (a) Full-range scan of the samples,(b) Co 2p, (c) O 1s of Co₃O₄ and (d) Full-range scan of the samples,(e) Cu 2p, (f) O 1s of CuO

Fig.S4 The efficiency of TOC degradation in CCO/PMS system.

Catalyst	Catalyst(mg/L)	LEV(mg/L)	$\mathbf{DMS}(m\alpha/\mathbf{I})$	Degradation	Time(min	Refs	
Catalyst			PMS(mg/L)	efficiency(%))		
Co _x /CN	100	20	400	80	90	1	
ZnCo-MOF	600	20	922	98.3	80	2	
SrTiO ₃ /CoFe ₂ O ₄ /rGO	100	20	500	50%	5	3	
AlSi ₂ Co ₄ -200	100	20	615	98.5	80	4	
LaCoO ₃ /Co ₃ O ₄	100	20	300	90	20	5	
nZVI/CF-900-0.3	200	20	615	93.83	60	6	
Co ₃ O ₄ /MnCo ₂ O ₄	400	20	300	88	30	7	
Eu ₂ O ₃ /Co ₃ O ₄	200	20	307	85	20	8	
Co-Fe PBAs@rGO	500	20	615	97.6	30	9	
CuCoFe-LDH	200	20	500	88.07	10	10	
ССО	200	20	800	96	60	This work	

Table S1. Comparison of catalytic degradation efficiency of LEV based on reported catalysts.

Type of the water body.	pH	COD (mg/L)	Cl ⁻ (mg/L)	NO ₃ - (mg/L)	$H_2PO_4^-$ (mg/L)	HCO ₃ -(mg/L)
Tap water	7.12	30.20	0.36	17.25	0.010	121.25
lake water	7.44	110.10	52.22	30.23	0.102	1100.25
Yellow River water	8.35	165.20	113.82	20.74	0.066	227.76

Table S2. Partial water quality parameters of deionized water, tap water, lake water, and Yellow River water.

Table S3. Possible structures, and EI mass spectra of LC-MS derivatives of the intermediates from LEV degradation in the CCO/PMS system.

Reference:

- 1 X. Lu, L. Wu, L. Liang, D. Liu, Y. Chen, Y. Zeng, M. Zhong and B. Jia, J. Water Process Eng., 2023, 56, 104427.
- 2 M. Cheng, Y. Huo, Z. Diao, G. Song, D. Chen, L. Hang and L. Kong, Sep. Purif. Technol., 2023, 327, 124976.
- 3 Y. Zhang, J. Qian, P. Wang, Y. He, B. Lu, S. Tang and K. Xu, Sep. Purif. Technol., 2023, 309, 123075.
- 4 M. Cheng, X. Long, P. Song, Z. Diao, G. Song, D. Chen and L. Kong, Chem. Eng. J., 2024, 480, 147885.
- 5 C. Cheng, L. Chang, X. Zhang, Q. Deng, H. Chai and Y. Huang, Environ. Res., 2023, 229, 115994.
- 6 W. Tan, Y. Ruan, Z. Diao, G. Song, M. Su, L. Hou, D. Chen, L. Kong and H. Deng, Chemosphere, 2021, 280, 130626.
- 7 Q. Deng, X. Zhang, L. Chang, H. Chai and Y. Huang, Sep. Purif. Technol., 2022, 294, 121182.
- 8 J. Liu, Z. Li, M. Wang, C. Jin, J. Kang, Y. Tang and S. Li, Sep. Purif. Technol., 2021, 274, 118666.
- 9 Y. Pi, L. Ma, P. Zhao, Y. Cao, H. Gao, C. Wang, Q. Li, S. Dong and J. Sun, J. Colloid Interface Sci., 2018, 526, 18–27.
- 10 N. Q. Tung, D. T. C. Van, D. X. Thang, N. T. K. An, T. T. Trang, B. D. Nhi, N. P. Thao, L. T. Son, N. N. Huy and N. T. Dung, J. Environ. Chem. Eng., 2023, 11, 110127.