Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information

Metal salts of fused triazole-triazine as Promising energetic materials: Crystal Structures, Energetic Properties and high thermal stability

Shichang Liu, Zhen Dong, and Zhiwen Ye *

Table of Contents

- 1. General methods
- 2. X-ray crystallography details
- 3. ¹H and ¹³CNMR spectra
- 4. IR spectra
- 5. Theoretical calculations
- 6. References

General methods

In this work, all mentioned reagents were analytical grade and were used strictly in accordance with regulations. ¹H and ¹³C NMR were recorded on a Bruker 500 MHz nuclear magnetic resonance spectrometer operating at 500 and 126 MHz, respectively. IR spectra were recorded using KBr pellets with a Thermo Nicolet iS10 sprctrometer. Elemental analyses were carried out on a vario EL III CHNOS elemental analyzer. The decomposition temperature of compounds **4**, **5**, **6** and **7** were measured on a differential scanning calorimeter (Mettler Toledo DSC823e) at a scan rate of 5 K min ⁻¹. Densities were confirmed at room temperature by using the Micromeritics AccuPyc 1340 gas pycnometer. Impact and friction sensitivity were obtained using a standard BAM Fallhammer and a BAM friction tester.

X-ray crystallography

Single-crystal X-ray diffraction analysis of **5**, **6** and **7** are carried out on a Bruker D8 QUEST diffractometer at 296(2) K. Data reduction and absorption corrections were performed with the SAINT and SADABS software packages,¹ respectively. The structures were solved by direct methods and refined by the full matrix least-squares based on F^2 using SHELXL-2018 program package.² The non-hydrogen atoms were refined anisotropically. All hydrogen atoms were placed at the calculated positions and refined as riding on the parent atoms. The details of data collection, structure refinement and crystallography are summarized in Table S1.

Compound	5	6	7
Empirical formula	$C_5HK_2N_9O_6$	$C_5HN_9O_6Rb_2$	$C_5H_2CsN_7O_5$
Formula weight	361.35	454.09	373.05
Temperature	296(2) K	296(2) K	296(2) K
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space group	P21/c	P21/c	P21/c
a/Å	11.4704(6) Å	7.7439(10) Å	8.9427(6) Å
b/Å	14.0220(6) Å	12.895(2) Å	11.6294(7) Å
c/Å	7.6750(3)Å	12.8216(19) Å	10.5630(7)Å
α/°	90°.	90°.	90°.
β/°	109.5380(10)°.	101.938(5)°.	114.417(2)°.
γ/°	90°.	90°.	90°.
Volume	1163.35(9) ų	1252.6(3) ų	1000.28(11) ų
Z	4	4	4
Density (calculated)	2.063 g/cm ³	2.408 g/cm ³	2.477 g/cm ³
F(000)	720	864	704
Crystal size (mm ³)	0.180 x 0.160 x 0.080	0.080 x 0.060 x 0.050	0.050 x 0.040 x 0.040
Theta range for data collection	2.905 to 27.515°	2.265 to 28.273°	2.501 to 28.336°
	-14<=h<=14, -	-10<=h<=9, -	-11<=h<=11,
Index ranges	18<=k<=17,	17<=k<=12, -	-12<=k<=15,
C C	-9<=l<=9	16<=l<=17	-11<= <=14
Reflections collected	11250	12790	10112
Max. and min.	0.7456 and 0.6234	0.7456 and 0.5328	0.7456 and 0.6613
transmission			

Table S1. Cr	ystal data and	structure	refinement	for 5 ,	6 and 7
--------------	----------------	-----------	------------	----------------	---------

Goodne	ess-of-fit on F ²	2 1.04	8			1.021			1.041		
Final R i	indices	R ₁ =	0.029	8,		R ₁ = 0.0323,			R ₁ = 0.02	222,	
[I>2sign	na(I)]	wR	₂ = 0.0	734		wR ₂ = 0.059	C		$wR_2 = 0.$	0445	
		R ₁ =	0.0373	3,		$R_1 = 0.0574,$			$R_1 = 0.03$	306,	
R indice	es (all data)	wR ₂	= 0.07	70		$wR_2 = 0.0648$	3		$wR_2 = 0.$	0468	
CCDC N	umber	2210	0019			2335914			2335915	5	
Table S	2. Bond length	ns [Å] for 5	•								
K(1)-O(2)	2.6979(12)	K(1)-N(3)	3.148	6(18)	K(2)-N(8)	3.1382(15)	C(2)-N	I(4)	1.338(2)	N(1)-N(2)	1.3653(19)
K(1)-O(3)	2.7432(13)	K(1)-N(7)	3.239	6(14)	K(2)-O(5)	3.1477(16)	C(2)-N	I(1)	1.369(2)	N(4)-N(5)	1.317(2)
K(1)-O(1)	2.7680(12)	K(1)-N(3)	3.353	3(18)	K(2)-O(6)	3.3937(19)	C(3)-N	I(5)	1.350(2)	N(6)-O(2)	1.2417(18
K(1)-O(2)	2.7864(13)	K(2)-O(1)	2.793	0(13)	K(2)-N(7)	3.4546(14)	C(3)-C	(4)	1.415(2)	N(6)-O(1)	1.2546(1-
K(1)_O(6)	2 8/72/1E	K(2)_N(2)		Q(16)	K(2)_K(2)	A 7226(10)		(5)	1 /170(2)	$N(7)_O(4)$	1 2550/101
	2.04/2(13)		2.023	3(10)	N(Z)-N(Z)	4.7550(10)		(J)	1.470(2)	N(7)-U(4)	1.230(18)
K(1)-O(3)	2.9301(13)	K(2)-O(6)	2.942	3(16)	C(1)-N(2)	1.326(2)	C(4)-N	1(8)	1.348(2)	N(7)-O(3)	1.2598(18
K(1)-N(4)	2.9553(15)	К(2)-О(3)	2.944	6(14)	C(1)-N(3)	1.347(3)	C(4)-N	l(1)	1.370(2)	N(8)-N(9)	1.346(2)
К(1)-О(4)	3.0940(13)	К(2)-О(4)	3.044	8(13)	C(1)-H(1)	0.93	C(5)-N	I(7)	1.364(2)	N(9)-O(5)	1.232(2)
K(1)-N(6)	3.1424(13)	К(2)-О(5)	3.070	7(14)	C(2)-N(3)	1.335(2)	C(5)-N	I(6)	1.382(2)	N(9)-O(6)	1.2388(19
Table S	3. Bond length	hs angles [°] for 5		1		1				
O(2)-K(1))-O(3)	73.77(4)		O(6)-k	<(2)-O(3)	61.86(4)		N(5)-C(3)-C(5)	11	11.80(13)
O(2)-K(1))-O(1)	162.95(4)		O(1)-ŀ	K(2)-O(4)	67.95(4)		C(4)-C(3)-C(5)	12	24.80(13)
O(3)-K(1))-O(1)	108.53(4)		N(2)-k	<(2)-O(4)	66.01(4)		N(8)-C(4)-N(1)	11	12.54(14)
O(2)-K(1))-O(2)	120.73(4)		O(6)-ŀ	K(2)-O(4)	66.39(4)		N(8)-C(4)-C(3)	13	35.63(14)
O(3)-K(1))-O(2)	136.32(4)		O(3)-ŀ	<(2)-O(4)	121.65(4)	N(1)-C(4)-C(3)	11	11.42(13)
O(1)-K(1))-O(2)	45.84(3)		O(1)-k	<(2)-O(5)	73.50(4)		N(7)-C(5)-N(6)	12	20.82(14)
O(2)-K(1))-O(6)	86.98(5)		N(2)-k	<(2)-O(5)	142.65(4)	N(7)-C(5)-C(3)	12	20.75(13)
O(3)-K(1))-O(6)	65.51(4)		O(6)-ŀ	<(2)-O(5)	108.15(4)	N(6)-C(5)-C(3)	11	17.94(13)
O(1)-K(1))-O(6)	79.07(5)		O(3)-ŀ	<(2)-O(5)	71.91(3)		N(2)-N(1)-C(2)	10	09.94(13)
O(2)-K(1))-O(6)	73.97(4)		O(4)-ŀ	<(2)-O(5)	101.67(4)	N(2)-N(1)-C(4)	12	26.76(14)
U(2)-K(1))-0(3)	53.79(3)		U(1)-k	(2)-N(8)	112.54(4)	C(2)	(1) - C(4)	12	23.27(14)
O(3)-K(1))-U(3)	122.54(4)		N(2)-k	(2)-N(8)	53.80(4)			(2) - N(2) - N(1)	10	UI.U/(14)
O(1)-K(1)	J-U(3)	115.36(3)		U(6)-ŀ	(2)-N(8)	91.09(5)			J - N(2) - K(2)	13	32.97(12)
O(2) - K(1))-U(3)	09.03(3)		O(3)-H	(2) - N(0)	95.5U(4)	N		J = IN(Z) = K(Z)	14	23.20(1U)
O(0)-K(1))-0(5))-N(4)	00.00(4)		O(5).	(2)-N(8)	110.82(4))-N(3)-V(1)	10	02.20(13)
O(2)-K(1)	, יי(+))-N(Δ)	73 2A(A)		O(1)-⊮	(2)-∩(5)	140.07(4 66 01/2)	J)-N(3)-K(1)	10	00.20(12)
O(1)-K(1))-N(4)	95 46(4)		N(2)-k	(2)-O(5)	10/2 Q1/A))-N(3)-K(1)	۲(۵/	4 64(11)
O(2)-K(1)) · •(∓))-N(4)	132.39(4)		O(6)-k	(2)-0(5)	153.83(4	,)	C(1)-N(3)-K(1)	0- 1f	65.56(14)
O(6)-K(1))-N(4)	133.66(5)		O(3)-k	(2)-0(5)	92.08(3)	,	K(1))-N(3)-K(1)	20	0.81(4)
/				- (-)	. , = . = ,	====(==(=))		···(-)			/

O(2)-K(1)-O(4)	117.08(4)	O(5)-K(2)-O(5)	57.14(4)	N(5)-N(4)-K(1)	139.06(11)
O(3)-K(1)-O(4)	143.34(3)	N(8)-K(2)-O(5)	94.05(4)	C(2)-N(4)-K(1)	102.15(10)
O(1)-K(1)-O(4)	167.52(3)	O(1)-K(2)-O(6)	69.83(4)	N(4)-N(5)-C(3)	122.84(14)
O(2)-K(1)-O(4)	108.56(3)	N(2)-K(2)-O(6)	124.31(4)	O(2)-N(6)-O(1)	120.14(13)
O(6)-K(1)-O(4)	170.88(4)	O(6)-K(2)-O(6)	83.58(5)	O(2)-N(6)-C(5)	123.33(13)
O(3)-K(1)-O(4)	158.10(4)	O(3)-K(2)-O(6)	84.37(4)	O(1)-N(6)-C(5)	116.51(13)
N(4)-K(1)-O(4)	164.76(4)	O(4)-K(2)-O(6)	64.55(3)	O(2)-N(6)-K(1)	62.09(8)
O(2)-K(1)-N(6)	143.89(4)	O(5)-K(2)-O(6)	38.56(3)	O(1)-N(6)-K(1)	61.30(7)
O(3)-K(1)-N(6)	127.81(4)	N(8)-K(2)-O(6)	174.03(4)	C(5)-N(6)-K(1)	162.63(10)
O(1)-K(1)-N(6)	23.43(3)	O(5)-K(2)-O(6)	91.92(4)	O(4)-N(7)-O(3)	120.12(13)
O(2)-K(1)-N(6)	23.19(3)	O(1)-K(2)-N(7)	25.67(4)	O(4)-N(7)-C(5)	117.18(13)
O(6)-K(1)-N(6)	79.66(4)	N(2)-K(2)-N(7)	164.71(4)	O(3)-N(7)-C(5)	122.70(13)
O(3)-K(1)-N(6)	92.08(3)	O(6)-K(2)-N(7)	68.54(3)	O(4)-N(7)-K(1)	72.11(8)
N(4)-K(1)-N(6)	112.23(4)	O(3)-K(2)-N(7)	20.81(3)	O(3)-N(7)-K(1)	56.06(8)
O(4)-K(1)-N(6)	90.01(3)	O(4)-K(2)-N(7)	113.88(4)	C(5)-N(7)-K(1)	151.57(10)
O(2)-K(1)-N(3)	119.34(4)	O(5)-K(2)-N(7)	52.48(3)	O(4)-N(7)-K(2)	104.07(9)
O(3)-K(1)-N(3)	148.57(4)	N(8)-K(2)-N(7)	115.81(4)	O(3)-N(7)-K(2)	56.13(8)
O(1)-K(1)-N(3)	67.80(4)	O(5)-K(2)-N(7)	86.20(3)	C(5)-N(7)-K(2)	108.98(9)
O(2)-K(1)-N(3)	64.80(4)	O(6)-K(2)-N(7)	64.68(3)	K(1)-N(7)-K(2)	93.19(3)
O(6)-K(1)-N(3)	138.22(4)	O(1)-K(2)-K(1)	36.71(3)	N(9)-N(8)-C(4)	116.79(14)
O(3)-K(1)-N(3)	84.04(4)	N(2)-K(2)-K(1)	86.01(3)	N(9)-N(8)-K(2)	114.13(10)
N(4)-K(1)-N(3)	76.05(5)	O(6)-K(2)-K(1)	100.30(4)	С(4)-N(8)-К(2)	118.43(10)
O(4)-K(1)-N(3)	115.56(4)	O(3)-K(2)-K(1)	124.12(3)	O(5)-N(9)-O(6)	121.48(16)
N(6)-K(1)-N(3)	59.79(4)	O(4)-K(2)-K(1)	44.02(3)	O(5)-N(9)-N(8)	122.38(14)
O(2)-K(1)-N(7)	95.03(4)	O(5)-K(2)-K(1)	64.54(3)	O(6)-N(9)-N(8)	116.03(16)
O(3)-K(1)-N(7)	22.40(3)	N(8)-K(2)-K(1)	139.58(3)	N(6)-O(1)-K(1)	95.28(8)
O(1)-K(1)-N(7)	90.21(3)	O(5)-K(2)-K(1)	92.30(3)	N(6)-O(1)-K(2)	119.20(9)
O(2)-K(1)-N(7)	128.90(4)	O(6)-K(2)-K(1)	39.81(3)	K(1)-O(1)-K(2)	106.19(4)
O(6)-K(1)-N(7)	72.83(4)	N(7)-K(2)-K(1)	104.42(3)	N(6)-O(2)-K(1)	129.14(10)
O(3)-K(1)-N(7)	144.82(4)	O(1)-K(2)-K(2)	100.45(3)	N(6)-O(2)-K(1)	94.71(9)
N(4)-K(1)-N(7)	61.13(4)	N(2)-K(2)-K(2)	120.03(4)	K(1)-O(2)-K(1)	100.51(4)
O(4)-K(1)-N(7)	22.72(3)	O(6)-K(2)-K(2)	45.43(4)	N(7)-O(3)-K(1)	101.54(9)
N(6)-K(1)-N(7)	112.38(4)	O(3)-K(2)-K(2)	68.69(3)	N(7)-O(3)-K(1)	125.78(10)
N(3)-K(1)-N(7)	129.71(4)	O(4)-K(2)-K(2)	56.15(3)	К(1)-О(3)-К(1)	95.98(4)
O(2)-K(1)-N(3)	62.64(4)	O(5)-K(2)-K(2)	68.47(3)	N(7)-O(3)-K(2)	103.06(9)
O(3)-K(1)-N(3)	83.17(4)	N(8)-K(2)-K(2)	136.45(3)	К(1)-О(3)-К(2)	117.57(4)
O(1)-K(1)-N(3)	134.03(4)	O(5)-K(2)-K(2)	125.59(3)	К(1)-О(3)-К(2)	113.17(4)
O(2)-K(1)-N(3)	140.50(4)	O(6)-K(2)-K(2)	38.15(3)	N(7)-O(4)-K(2)	142.06(10)
O(6)-K(1)-N(3)	141.81(5)	N(7)-K(2)-K(2)	57.73(2)	N(7)-O(4)-K(1)	85.17(9)
O(3)-K(1)-N(3)	91.28(4)	K(1)-K(2)-K(2)	63.92(12)	K(2)-O(4)-K(1)	92.83(3)
N(4)-K(1)-N(3)	44.15(4)	N(2)-C(1)-N(3)	17.23(16)	N(9)-O(5)-K(2)	104.34(11)
O(4)-K(1)-N(3)	101.50(4)	N(2)-C(1)-H(1)	121.4	N(9)-O(5)-K(2)	130.85(11)
N(6)-K(1)-N(3)	138.50(4)	N(3)-C(1)-H(1)	121.4	К(2)-О(5)-К(2)	122.86(4)
N(3)-K(1)-N(3)	79.48(4)	N(3)-C(2)-N(4)	127.76(15)	N(9)-O(6)-K(1)	129.45(12)

N(7)-K(1)-N(3)	86.61(4)	N(3)-C(2)-N(1)	109.55(15)	N(9)-O(6)-K(2)	115.97(11)
O(1)-K(2)-N(2)	69.20(4)	N(4)-C(2)-N(1)	122.68(15)	К(1)-О(6)-К(2)	114.36(5)
O(1)-K(2)-O(6)	133.60(4)	N(3)-C(2)-K(1)	72.99(10)	N(9)-O(6)-K(2)	88.44(11)
N(2)-K(2)-O(6)	98.92(5)	N(4)-C(2)-K(1)	55.84(8)	К(1)-О(6)-К(2)	90.44(4)
O(1)-K(2)-O(3)	145.34(4)	N(1)-C(2)-K(1)	168.08(12)	К(2)-О(6)-К(2)	96.42(5)
N(2)-K(2)-O(3)	145.19(4)	N(5)-C(3)-C(4)	123.39(14)		

Table S4. Bond lengths [Å] for 6.

								_
Rb(1)-O(4)	2.879(2)	Rb(2)-O(5)	2.937(2)	C(1)-N(1)	1.328(4)	C(5)-N(9)	1.380(3)	
Rb(1)-O(5)	2.905(2)	Rb(2)-O(4)	2.954(2)	C(1)-N(2)	1.347(4)	N(1)-N(3)	1.370(3)	
Rb(1)-O(3)	2.963(2)	Rb(2)-O(3)	2.964(2)	C(1)-H(2)	0.93	N(5)-N(6)	1.335(3)	
Rb(1)-O(2)	2.992(2)	Rb(2)-N(1)	3.040(2)	C(2)-N(2)	1.327(4)	N(6)-O(1)	1.239(3)	
Rb(1)-N(8)	3.023(2)	Rb(2)-O(1)	3.046(2)	C(2)-N(7)	1.346(4)	N(6)-O(2)	1.244(3)	
Rb(1)-O(1)	3.071(2)	Rb(2)-N(5)	3.076(2)	C(2)-N(3)	1.379(3)	N(7)-N(8)	1.320(3)	
Rb(1)-N(7)	3.219(3)	Rb(2)-O(2)	3.092(2)	C(3)-N(5)	1.343(3)	N(9)-O(4)	1.235(3)	
Rb(1)-N(2)	3.258(2)	Rb(2)-O(6)	3.098(2)	C(3)-N(3)	1.362(3)	N(9)-O(3)	1.258(3)	
Rb(1)-O(6)	3.345(2)	Rb(2)-N(10)	3.326(3)	C(3)-C(4)	1.418(4)	N(10)-O(5)	1.242(3)	
Rb(1)-N(9)	3.637(3)	Rb(2)-N(9)	3.327(2)	C(4)-N(8)	1.354(3)	N(10)-O(6)	1.260(3)	
Rb(1)-Rb(2)	4.5964(7)	Rb(2)-N(7)	3.398(3)	C(4)-C(5)	1.469(4)			
Rb(1)-Rb(2)	4.7255(6)	Rb(2)-N(6)	3.450(2)	C(5)-N(10)	1.367(3)			

Table S5. Bond lengths angles [°] for 6.

		1		1	
O(4)-Rb(1)-O(5)	52.34(6)	O(5)-Rb(2)-O(1)	92.68(6)	N(8)-C(4)-C(3)	122.4(2)
O(4)-Rb(1)-O(3)	75.97(7)	O(4)-Rb(2)-O(1)	64.61(6)	N(8)-C(4)-C(5)	112.1(2)
O(5)-Rb(1)-O(3)	89.27(7)	O(3)-Rb(2)-O(1)	100.92(6)	C(3)-C(4)-C(5)	125.5(2)
O(4)-Rb(1)-O(2)	122.16(6)	N(1)-Rb(2)-O(1)	98.03(6)	N(10)-C(5)-N(9)	120.7(2)
O(5)-Rb(1)-O(2)	74.59(6)	O(5)-Rb(2)-N(5)	88.35(7)	N(10)-C(5)-C(4)	120.4(2)
O(3)-Rb(1)-O(2)	129.63(6)	O(4)-Rb(2)-N(5)	136.16(7)	N(9)-C(5)-C(4)	118.8(2)
O(4)-Rb(1)-N(8)	84.44(7)	O(3)-Rb(2)-N(5)	107.54(6)	C(1)-N(1)-N(3)	101.0(2)
O(5)-Rb(1)-N(8)	112.92(7)	N(1)-Rb(2)-N(5)	52.59(6)	C(1)-N(1)-Rb(2)	137.91(18)
O(3)-Rb(1)-N(8)	131.37(6)	O(1)-Rb(2)-N(5)	150.52(6)	N(3)-N(1)-Rb(2)	120.41(15)
O(2)-Rb(1)-N(8)	98.53(6)	O(5)-Rb(2)-O(2)	72.65(6)	C(2)-N(2)-C(1)	102.1(2)
O(4)-Rb(1)-O(1)	65.15(6)	O(4)-Rb(2)-O(2)	105.66(6)	C(2)-N(2)-Rb(1)	153.47(18)
O(5)-Rb(1)-O(1)	117.02(6)	O(3)-Rb(2)-O(2)	139.76(6)	C(1)-N(2)-Rb(1)	103.40(18)
O(3)-Rb(1)-O(1)	67.77(5)	N(1)-Rb(2)-O(2)	61.66(6)	C(2)-N(2)-Rb(2)	76.91(16)
O(2)-Rb(1)-O(1)	161.02(6)	O(1)-Rb(2)-O(2)	41.30(5)	C(1)-N(2)-Rb(2)	119.5(2)
N(8)-Rb(1)-O(1)	63.60(6)	N(5)-Rb(2)-O(2)	112.20(6)	Rb(1)-N(2)-Rb(2)	84.22(6)
O(4)-Rb(1)-N(7)	63.47(7)	O(5)-Rb(2)-O(6)	41.97(6)	C(3)-N(3)-N(1)	126.5(2)
O(5)-Rb(1)-N(7)	89.67(7)	O(4)-Rb(2)-O(6)	102.59(6)	C(3)-N(3)-C(2)	124.2(2)
O(3)-Rb(1)-N(7)	128.70(6)	O(3)-Rb(2)-O(6)	65.70(6)	N(1)-N(3)-C(2)	109.3(2)
O(2)-Rb(1)-N(7)	99.16(6)	N(1)-Rb(2)-O(6)	114.32(6)	N(6)-N(5)-C(3)	117.4(2)

1					
N(8)-Rb(1)-N(7)	24.15(6)	O(1)-Rb(2)-O(6)	117.28(6)	N(6)-N(5)-Rb(2)	114.06(15)
O(1)-Rb(1)-N(7)	67.40(6)	N(5)-Rb(2)-O(6)	82.18(7)	C(3)-N(5)-Rb(2)	126.80(17)
O(4)-Rb(1)-N(2)	141.04(7)	O(2)-Rb(2)-O(6)	113.43(6)	O(1)-N(6)-O(2)	121.4(2)
O(5)-Rb(1)-N(2)	137.23(7)	O(5)-Rb(2)-N(10)	21.76(6)	O(1)-N(6)-N(5)	122.7(2)
O(3)-Rb(1)-N(2)	67.65(6)	O(4)-Rb(2)-N(10)	120.61(7)	O(2)-N(6)-N(5)	115.9(2)
O(2)-Rb(1)-N(2)	92.56(6)	O(3)-Rb(2)-N(10)	87.58(6)	O(1)-N(6)-Rb(2)	60.89(13)
N(8)-Rb(1)-N(2)	109.22(6)	N(1)-Rb(2)-N(10)	95.72(6)	O(2)-N(6)-Rb(2)	63.06(14)
O(1)-Rb(1)-N(2)	87.93(6)	O(1)-Rb(2)-N(10)	110.93(6)	N(5)-N(6)-Rb(2)	166.63(18)
N(7)-Rb(1)-N(2)	132.99(6)	N(5)-Rb(2)-N(10)	78.26(6)	N(8)-N(7)-C(2)	116.6(2)
O(4)-Rb(1)-O(6)	103.28(6)	O(2)-Rb(2)-N(10)	94.34(6)	N(8)-N(7)-Rb(1)	69.57(14)
O(5)-Rb(1)-O(6)	65.17(6)	O(6)-Rb(2)-N(10)	22.27(5)	C(2)-N(7)-Rb(1)	173.78(19)
O(3)-Rb(1)-O(6)	62.54(6)	O(5)-Rb(2)-N(9)	119.07(7)	N(8)-N(7)-Rb(2)	112.11(18)
O(2)-Rb(1)-O(6)	67.41(6)	O(4)-Rb(2)-N(9)	21.66(5)	C(2)-N(7)-Rb(2)	84.41(17)
N(8)-Rb(1)-O(6)	165.92(7)	O(3)-Rb(2)-N(9)	22.12(5)	Rb(1)-N(7)-Rb(2)	94.10(7)
O(1)-Rb(1)-O(6)	130.28(6)	N(1)-Rb(2)-N(9)	153.91(7)	N(7)-N(8)-C(4)	123.5(2)
N(7)-Rb(1)-O(6)	153.50(6)	O(1)-Rb(2)-N(9)	84.81(6)	N(7)-N(8)-Rb(1)	86.28(15)
N(2)-Rb(1)-O(6)	72.20(6)	N(5)-Rb(2)-N(9)	120.11(6)	C(4)-N(8)-Rb(1)	150.01(18)
O(4)-Rb(1)-N(9)	60.38(7)	O(2)-Rb(2)-N(9)	126.09(6)	O(4)-N(9)-O(3)	120.3(2)
O(5)-Rb(1)-N(9)	86.95(6)	O(6)-Rb(2)-N(9)	86.53(6)	O(4)-N(9)-C(5)	123.1(2)
O(3)-Rb(1)-N(9)	18.62(5)	N(10)-Rb(2)-N(9)	107.54(6)	O(3)-N(9)-C(5)	116.6(2)
O(2)-Rb(1)-N(9)	145.20(5)	O(5)-Rb(2)-N(7)	153.91(6)	O(4)-N(9)-Rb(2)	61.96(14)
N(8)-Rb(1)-N(9)	115.93(6)	O(4)-Rb(2)-N(7)	60.44(6)	O(3)-N(9)-Rb(2)	62.53(13)
O(1)-Rb(1)-N(9)	53.55(5)	O(3)-Rb(2)-N(7)	95.29(6)	C(5)-N(9)-Rb(2)	158.73(19)
N(7)-Rb(1)-N(9)	110.17(6)	N(1)-Rb(2)-N(7)	82.82(6)	O(4)-N(9)-Rb(1)	108.80(19)
N(2)-Rb(1)-N(9)	81.15(6)	O(1)-Rb(2)-N(7)	65.35(6)	O(3)-N(9)-Rb(1)	48.77(14)
O(6)-Rb(1)-N(9)	78.14(6)	N(5)-Rb(2)-N(7)	103.89(6)	C(5)-N(9)-Rb(1)	108.13(17)
O(4)-Rb(1)-Rb(2)	165.75(6)	O(2)-Rb(2)-N(7)	81.36(6)	Rb(2)-N(9)-Rb(1)	87.23(6)
O(5)-Rb(1)-Rb(2)	127.72(5)	O(6)-Rb(2)-N(7)	160.97(6)	O(5)-N(10)-O(6)	119.9(2)
O(3)-Rb(1)-Rb(2)	117.69(4)	N(10)-Rb(2)-N(7)	175.65(6)	O(5)-N(10)-C(5)	123.5(2)
O(2)-Rb(1)-Rb(2)	53.48(4)	N(9)-Rb(2)-N(7)	74.79(6)	O(6)-N(10)-C(5)	116.5(2)
N(8)-Rb(1)-Rb(2)	83.08(5)	O(5)-Rb(2)-N(6)	79.37(6)	O(5)-N(10)-Rb(2)	61.21(15)
O(1)-Rb(1)-Rb(2)	114.61(4)	O(4)-Rb(2)-N(6)	85.40(6)	O(6)-N(10)-Rb(2)	68.65(15)
N(7)-Rb(1)-Rb(2)	102.81(5)	O(3)-Rb(2)-N(6)	119.35(6)	C(5)-N(10)-Rb(2)	148.53(18)
N(2)-Rb(1)-Rb(2)	50.93(5)	N(1)-Rb(2)-N(6)	81.38(6)	N(6)-O(1)-Rb(2)	98.30(15)

	O(6)-Rb(1)-Rb(2)	87.62(4)		O(1)-	Rb(2)-N(6)	20.81(5)		N(6)-O(1)-Rb(1)	147.26(1	L8)
	N(9)-Rb(1)-Rb(2)	132.04(4	L)	N(5)-	Rb(2)-N(6)	133.04(6)		Rb(2)-O(1)-Rb(1)	104.75	(6)
	O(4)-Rb(1)-Rb(2)	82.85(5)		O(2)-	Rb(2)-N(6)	21.02(5)		N(6)-O(2)-Rb(1)	116 27(1	17)
	O(5)-Rb(1)-Rb(2)	36.24(5)		O(6)-	Rb(2)-N(6)	113.84(6)		N(6)-O(2)-Rb(2)	95.92(1	L6)
	O(3)-Rb(1)-Rb(2)	118.41(4	L)	N(10))-Rb(2)-N(6)	100.31(6)		Rb(1)-O(2)-Rb(2)	101.91	(7)
	O(2)-Rb(1)-Rb(2)	39.81(4)		N(9)-	Rb(2)-N(6)	105.23(6)		N(9)-O(3)-Rb(1)	112.61(1	L7)
	N(8)-Rb(1)-Rb(2)	102.29(5	5)	N(7)-	Rb(2)-N(6)	75.44(6)		N(9)-O(3)-Rb(2)	95.36(1	L4)
	O(1)-Rb(1)-Rb(2)	145.44(4	L)	N(1)-	C(1)-N(2)	117.5(3)		Rb(1)-O(3)-Rb(2)	108.44	(7)
	N(7)-Rb(1)-Rb(2)	87.36(5)		N(1)-	C(1)-H(2)	1	.21.2	N(9)-O(4)-Rb(1)	150.50(1	L7)
	N(2)-Rb(1)-Rb(2)	126.47(5	5)	N(2)-	C(1)-H(2)	1	.21.2	N(9)-O(4)-Rb(2)	96.38(1	L6)
	O(6)-Rb(1)-Rb(2)	67.59(4)		N(2)-	C(2)-N(7)	128.6(2)		Rb(1)-O(4)-Rb(2)	112.28	(7)
	N(9)-Rb(1)-Rb(2)	121.59(4	L)	N(2)-	C(2)-N(3)	110.1(2)		N(10)-O(5)-Rb(1)	149.38(1	L7)
	Rb(2)-Rb(1)-Rb(2	2) 93.108(1	.1)	N(7)-	C(2)-N(3)	121.3(3)		N(10)-O(5)-Rb(2)	97.03(1	L6)
	O(5)-Rb(2)-O(4)	124.37(8	3)	N(2)-C(2)-Rb(2)		81.63(16)		Rb(1)-O(5)-Rb(2)		107.99	(7)
	O(5)-Rb(2)-O(3)	102.96(6)		N(7)-	C(2)-Rb(2)	73.29(17)		N(10)-O(6)-Rb(2)	89.08(1	L6)
	O(4)-Rb(2)-O(3)	42.86(6)		N(3)-	C(2)-Rb(2)	118.94(18	;)	N(10)-O(6)-Rb(1)	133.08(1	L9)
	O(5)-Rb(2)-N(1)	86.81(7)		N(5)-	C(3)-N(3)	113.2(2)		Rb(2)-O(6)-Rb(1)	96.47(6	5)
	O(4)-Rb(2)-N(1)	143.05(7	7)	N(5)-	C(3)-C(4)	134.4(2)					
	O(3)-Rb(2)-N(1)	158.16(7	')	N(3)-	C(3)-C(4)	111.8(2)					
	Table S6. Bond	lengths [Å] f	or 7 .								
	Cs(1)-O(3)	3.097(2)	Cs(1)-I	N(2)	3.540(2)	C(2)-N(4)		1.342(3)	C(5)-N(7)	1.380(3	3)
	Cs(1)-O(1)	3.1007(18)	Cs(1)-0	D(2)	3.556(2)	C(2)-N(3)		1.355(3)	N(1)-N(3)	1.378(3)
	Cs(1)-N(1)	3.110(2)	Cs(1)-I	N(6)	3.559(2)	C(3)-O(5)		1.206(3)	N(4)-N(5)	1.348(3)
	Cs(1)-O(4)	3.138(2)	Cs(1)-I	N(6)	3.591(2)	C(3)-N(3)		1.398(3)	N(4)-H(4)	0.86	
	Cs(1)-O(5)	3.2810(17)	C(1)-N	J(1)	1.311(3)	C(3)-C(4)		1.481(3)	N(6)-O(2)	1.241(3)
	Cs(1)-O(1)	3.382(2)	C(1)-N	J(2)	1.366(3)	C(4)-N(5)		1.293(3)	N(6)-O(1)	1.264(3)
	Cs(1)-O(2)	3.436(2)	C(1)-ŀ	1(1)	0.93	C(4)-C(5)		1.471(3)	N(7)-O(3)	1.242(3)
	Cs(1)-N(5)	3.474(2)	C(2)-N	J(2)	1.321(3)	C(5)-N(6)		1.367(3)	N(7)-O(4)	1.247(3)
· r	Table S7. Bond	lengths angl	es [°] for	7.							1
	O(3)-Cs(1)-O(1) 123	8.18(5)	O(2	2)-Cs(1)-O(2)	83.40(5)	C(1)-N	(1)-N(3)	101.50(18)	
	O(3)-Cs(1)-N(1) 104	.43(6)	N(5	5)-Cs(1)-O(2)	132.71(5	5)	C(1)-N	1)-Cs(1)	125.30(16)	
	O(1)-Cs(1)-N(1) 120	0.75(5)	N(2	2)-Cs(1)-O(2)	108.16(5)	N(3)-N	(1)-Cs(1)	124.83(14)	
	U(3)-Cs(1)-O((4) 62	.6U(6)	0(3	$(1) - C_{S}(1) - N(6)$	110.21(5) \	C(2)-N	(2)-C(1)	101.47(19)	
	U(1)- $U(1)$ -	(4) /3	./J(0)		$J = C_{S}(1) = N(G)$	20.43(4) -	C(2)-IN	(2) - CS(1)	14U./5(10)	
	N(1)-CS(1)-O(0)	(+) 10 ²	.12(2)		$J = C_{S}(1) = N(0)$	140.54(5 76 62/5	ן (ג ו		2)-US(1)	00.00(13)	
	O(3) - CS(1) - O(0)	טן בן 102 (5) 1סנ	.01(5)	0(4	$h_{Cs}(1) = NI(D)$	10.02(5	5)	C(2)-N	(3)-(12)	124 84(10)	
	$N(1)_{C_{1}}$	5) 123 (5) 65	03(5)		$\int_{-C_{S}(1)_{-N}(G)}$	122.00(3 7/ 71//	יי ויי		(3)-C(3)	125 75/10	
	N(1)-C3(1)-O(5, 05		0(1	.,	, 4 . / 1(4	1	14(±)-11		123.73(13)	

O(4)-Cs(1)-O(5)	160.13(5)	O(2)-Cs(1)-N(6)	20.34(4)	C(2)-N(4)-N(5)	121.94(19)
O(3)-Cs(1)-O(1)	146.68(5)	N(5)-Cs(1)-N(6)	52.11(5)	C(2)-N(4)-Cs(1)	128.22(16)
O(1)-Cs(1)-O(1)	72.78(5)	N(2)-Cs(1)-N(6)	76.35(5)	N(5)-N(4)-Cs(1)	69.46(12)
N(1)-Cs(1)-O(1)	86.69(5)	O(2)-Cs(1)-N(6)	80.68(5)	C(2)-N(4)-H(4)	119.03(19)
O(4)-Cs(1)-O(1)	145.69(5)	O(3)-Cs(1)-N(6)	156.50(5)	N(5)-N(4)-H(4)	119.03(19)
O(5)-Cs(1)-O(1)	53.34(4)	O(1)-Cs(1)-N(6)	77.67(5)	Cs(1)-N(4)-H(4)	74
O(3)-Cs(1)-O(2)	107.49(5)	N(1)-Cs(1)-N(6)	67.79(5)	C(4)-N(5)-N(4)	119.03(19)
O(1)-Cs(1)-O(2)	38.35(5)	O(4)-Cs(1)-N(6)	139.95(5)	C(4)-N(5)-Cs(1)	121.17(15)
N(1)-Cs(1)-O(2)	148.01(5)	O(5)-Cs(1)-N(6)	53.89(4)	N(4)-N(5)-Cs(1)	89.23(13)
O(4)-Cs(1)-O(2)	92.33(5)	O(1)-Cs(1)-N(6)	20.61(4)	O(2)-N(6)-O(1)	120.0(2)
O(5)-Cs(1)-O(2)	105.35(4)	O(2)-Cs(1)-N(6)	81.87(5)	O(2)-N(6)-C(5)	124.5(2)
O(1)-Cs(1)-O(2)	65.30(4)	N(5)-Cs(1)-N(6)	135.58(5)	O(1)-N(6)-C(5)	115.5(2)
O(3)-Cs(1)-N(5)	58.11(5)	N(2)-Cs(1)-N(6)	91.09(5)	O(2)-N(6)-Cs(1)	74.22(14)
O(1)-Cs(1)-N(5)	67.02(5)	O(2)-Cs(1)-N(6)	19.99(4)	O(1)-N(6)-Cs(1)	58.88(12)
N(1)-Cs(1)-N(5)	154.77(5)	N(6)-Cs(1)-N(6)	86.19(5)	C(5)-N(6)-Cs(1)	141.71(15)
O(4)-Cs(1)-N(5)	52.78(5)	N(1)-C(1)-N(2)	116.9(2)	O(2)-N(6)-Cs(1)	78.42(13)
O(5)-Cs(1)-N(5)	132.75(4)	N(1)-C(1)-Cs(1)	144.55(17)	O(1)-N(6)-Cs(1)	70.34(13)
O(1)-Cs(1)-N(5)	118.03(5)	N(2)-C(1)-Cs(1)	69.88(13)	C(5)-N(6)-Cs(1)	121.10(14)
O(2)-Cs(1)-N(5)	53.72(5)	N(1)-C(1)-H(1)	121.6	Cs(1)-N(6)-Cs(1)	93.81(5)
O(3)-Cs(1)-N(2)	77.27(5)	N(2)-C(1)-H(1)	121.6	O(3)-N(7)-O(4)	121.1(2)
O(1)-Cs(1)-N(2)	95.14(5)	Cs(1)-C(1)-H(1)	63.3	O(3)-N(7)-C(5)	121.2(2)
N(1)-Cs(1)-N(2)	130.64(5)	N(2)-C(2)-N(4)	130.0(2)	O(4)-N(7)-C(5)	117.7(2)
O(4)-Cs(1)-N(2)	118.65(5)	N(2)-C(2)-N(3)	111.2(2)	N(6)-O(1)-Cs(1)	100.69(13)
O(5)-Cs(1)-N(2)	66.54(5)	N(4)-C(2)-N(3)	118.83(19)	N(6)-O(1)-Cs(1)	89.05(14)
O(1)-Cs(1)-N(2)	71.93(4)	O(5)-C(3)-N(3)	122.3(2)	Cs(1)-O(1)-Cs(1)	107.22(5)
O(2)-Cs(1)-N(2)	56.82(5)	O(5)-C(3)-C(4)	128.0(2)	N(6)-O(2)-Cs(1)	85.43(15)
N(5)-Cs(1)-N(2)	67.12(5)	N(3)-C(3)-C(4)	109.69(19)	N(6)-O(2)-Cs(1)	81.59(13)
O(3)-Cs(1)-O(2)	168.93(5)	N(5)-C(4)-C(5)	117.7(2)	Cs(1)-O(2)-Cs(1)	96.60(5)
O(1)-Cs(1)-O(2)	66.69(5)	N(5)-C(4)-C(3)	125.3(2)	N(7)-O(3)-Cs(1)	123.13(16)
N(1)-Cs(1)-O(2)	64.63(5)	C(5)-C(4)-C(3)	116.9(2)	N(7)-O(4)-Cs(1)	139.73(17)
O(4)-Cs(1)-O(2)	120.15(5)	N(6)-C(5)-N(7)	122.0(2)	C(3)-O(5)-Cs(1)	140.40(15)
O(5)-Cs(1)-O(2)	71.83(4)	N(6)-C(5)-C(4)	117.3(2)	C(3)-O(5)-Cs(1)	110.71(14)
O(1)-Cs(1)-O(2)	36.34(4)	N(7)-C(5)-C(4)	120.7(2)	Cs(1)-O(5)-Cs(1)	106.18(4)

Figure S1 ¹H NMR spectra for 4

Figure S2 ¹H NMR spectra for 5

Figure S3 ¹H NMR spectra for 6

Figure S4 ¹H NMR spectra for 7

Figure S6 ¹³C NMR spectra for 5.

Figure S8 ¹³C NMR spectra for 7.

Figure S11 IR spectra for 6.

Figure S12 IR spectra for 7.

Theoretical calculation

As one of the most significant parameters, heat of formation (HOF) has a remarkable impact on energetic compounds. As a common and useful means, computation methods have been used in calculation HOF. In this work, the predictions of HOF of compounds used isodesmic reactions by Gaussian 09.³ The heats of formation for CH₄, NH₃, NH₂CH₃, NH₂NO₂, triazole, [1,2,4]triazolo[5,1-c][1,2,4]triazine and [1,2,4]triazolo[5,1-c][1,2,4]triazin-4(1H)-one, were obtained from literature.⁴ The geometric optimization and frequency analyses of the structures are based on available single-crystal structures and using the B3LYP⁵ functional with the 6-311++G(d, p) basis set.⁶ The geometrical were optimized with no constraints imposed under default convergence criteria. Total energy (E₀) and zero-point energy (ZPE) were calculated with vibrational frequency analysis.

Figure S13 Isodesmic reactions for calculating heats of formation.

For energetic salts, the solid-phase heat of formation is calculated based on a Born-Haber energy cycle (Figure S14).⁷ The number is simplified by equation 1:

Figure S14 Born-Haber Cycle for the formation of energetic salts.

 $\Delta H_{\rm f}^{0} \text{ (salt, 298 K)} = \Delta H_{\rm f}^{0} \text{ (cation, 298K)} + \Delta H_{\rm f}^{0} \text{ (anion, 298K)} - \Delta H_{\rm L}$ (1)

where ΔH_{L} is the lattice energy of the salts, which could be predicted by using the formula suggested by Jenkins et al. [Eq. (2)]

 $\Delta H_{\rm L} = U_{\rm POT} + [p(n_{\rm M}/2 - 2) + q(n_{\rm X}/2 - 2)]RT$ (2)

where n_M and n_X depend on the nature of the ions, M^{q+} and X^{p-} , and are equal to 3 for monatomic ions, 5 for linear polyatomic ions, and 6 for nonlinear polyatomic ions.

The equation for lattice potential energy U_{POT} [Eq. (3)] has the form:

$$U_{POT} [kJ mol^{-1}] = \gamma (\rho_m/M_m)^{1/3} + \delta$$
 (3)

where ρ_m [g cm⁻³] is the density of the salt, M_m is the chemical formula mass of the ionic material, and the coefficients γ (kJ mol⁻¹ cm) and δ (kJ mol⁻¹) are assigned literature values.⁷

Table S8 DS	SC of compou	nd 4 and 6 .
-------------	--------------	----------------------------

Compound	T _p (5 k/min)/℃	T _p (10 k/min)/℃	T _p (20 k/min)/℃
4	271.93	282.53	294.14
6	279.59	288.22	297.28

Compound	T _p (5 k/min)/℃	T _p (7.5 k/min)/℃	T _p (10 k/min)/℃
5	278.48	285.53	289.4
7	263.93	268.37	272.7

Table S9 DSC of compound 5 and 7.

Figure S15 The DSC curve of different metal salts with heating rates of 5 K/min.

References

[1] Bruker, APEX2, Bruker AXS Inc., Madison, Wisconsin, USA, 2005.

[2] G. M. Sheldrick. Acta Cryst., 2015, C71:3-8.

- [3] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, J. A. Pople, *Gaussian 09, revision A. 01*, Gaussian, Inc., Wallingford, CT, **2009**.
- [4] a) H. Gao, Y. H. Joo, D. A. Parrish, T. Vo, J. M. Shreeve, *Chem. Eur. J.*, **2011**, *17*, 4613–4618. b) H. Gao, C. Ye, C. M. Piekarski, J. M. Shreeve, *J. Phys. Chem. C.*, **2007**, *111*, 10718–10731. c) Q. Yu, G. Cheng, X. Ju, C. Lu, H. Yang, *New J. Chem.*, **2017**, *41*, 4797–4801. d) B. Wu, Z. Wang, H. Yang, Q. Lin, X. Ju, C. Lu, G. Cheng, *RSC Adv.*, **2014**, *4*, 58243–58251.
- [5] a) A. D. Becke, J. Chem. Phys., 1993, 98, 5648–5652; b) P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem., 1994, 98, 11623–11627.
- [6] P. C. Hariharan and J. A. Pople, Chim. Acta., 1973, 28, 213–222.
- [7] H. D. B. Jenkins, D. Tudela, L. Glasser, Inorg. Chem., 2002, 41, 2364-2367.
- [8] Dong Z, Zhang G, Liu Y. J. Mol. Struct, 2023, 1283: 135274.