Electronic Supplementary Information

Macrocycle-based charge transfer co-crystals with specific selective vapochromism to benzene

Fei Zeng^{a,*} Lin-Li Tang,^a and Wen-Hu Bao^a

^aCollege of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China.

E-mail: zengfei@iccas.ac.cn

Contents

1. Materials and Methods.

All reactions were carried out with oven-dried glassware. Commercial reagents were used without further purification. ^{1}H NMR spectra were recorded on a Bruker DMX 400 NMR spectrometer. Single-crystal X-ray diffraction data were collected on a Bruker Smart APEXII CCD diffractometer using graphite monochromated Cu K α (λ =1.54184 Å) radiation at 298 K.

Powder X-ray diffraction (PXRD) data were collected on a Rigaku Ultimate-IV X-ray diffractometer operating at 40 kV/30 mA using the Cu K α line ($\lambda = 1.5418$ Å). Data were measured over the range of 5-45° in 5°/min steps over 8 min.

Vapochromic experiments. An open 2 mL vial containing 25 mg of activated P2@TCNB was placed in a sealed 20 mL vial containing 1 mL of each vapor solution. Activated P2@TCNB powders were exposed under saturated vapor pressure in the closed vessel at room temperature. Obvious color changes were observed after 12 hours.

Sample preparation of P2@TCNB. P2 (10.4 mg) and TCNB (1.78 mg) were dissolved in 2 mL CH₂Cl₂, and then slowly evaporation of the solution at room temperature for 2 days, the red co-crystals P2@TCNB was obtained.

Large scale preparation of P2@TCNB. P2 (490 mg) and TCNB (84 mg) were dissolved in 50 mL CH₂Cl₂, and then slowly evaporation of the solution at room temperature for 3 days, the red co-crystals P2@TCNB was obtained.

Adsorption Experiments. In a typical solid-vapor adsorption experiment, an open vial (4 mL) containing 5 mg of activated P2@TCNB was placed into a sealed vial (20 mL) containing 1 mL of benzene or mixture vapor. The adsorption process was monitored over time by completely dissolving a portion of the crystals in CDCl₃ and measuring ¹H NMR spectra.

2. Characterization of Macrocycle-Based CT Cocrystals

8.28 8.28 8.28 8.24 8.24 7.77 7.77 7.77 6.97 7.409 8.20 7.412

Figure S1.¹H NMR spectrum (400 MHz, CDCl₃, 298K) of activated P2@TCNB

Figure S2. ¹H NMR spectrum (400 MHz, CDCl₃, 298K) of activated P2@TCNB after exposure to *m*-Xylene

Figure S3. ¹H NMR spectrum (400 MHz, CDCl₃, 298K) of activated P2@TCNB after exposure to *p*-Xylene

-8.77 -8.28 -8.28 -7.77 -7.77 -7.07 -5.30 -5.30 -2.31

Figure S4.¹H NMR spectrum (400 MHz, CDCl₃, 298K) of activated P2@TCNB after exposure to *o*-Xylene

Figure S5.¹H NMR spectrum (400 MHz, CDCl₃, 298K) of activated P2@TCNB after exposure to benzene

Figure S6.¹H NMR spectrum (400 MHz, CDCl₃, 298K) of activated P2@TCNB after exposure to CH₃OH

Figure S7. H NMR spectrum (400 MHz, Dimethyl Sulfoxide-*d*6, 298K) of activated P2@TCNB after exposure to CHCl₃

Figure S8. ¹H NMR spectrum (400 MHz, CDCl₃, 298K) of activated P2@TCNB after exposure to CH₃CN

Figure S9.¹H NMR spectrum (400 MHz, CDCl₃, 298K) of activated P2@TCNB after exposure to CH₂Br₂

Figure S10.¹H NMR spectrum (400 MHz, CDCl₃, 298K) of activated P2@TCNB after exposure to toluene

Figure S11. H NMR spectrum (400 MHz, CDCl₃, 298K) of activated P2@TCNB after exposure to ethyl acetate

Figure S12. PXRD patterns of P2, activated P2@TCNB, TCNB and simulated from P2@TCNB

3. PXRD patterns and UV/Vis absorption spectra of activated P2@TCNB after exposure to VOCs

Figure S13. PXRD patterns of activated P2@TCNB after exposure to *o*-Xylene, *m*-Xylene, *p*-Xylene, toluene, CH₃OH and ethyl acetate

Figure S14. Solid-state UV/Vis absorption spectra of activated P2@TCNB after exposure to VOCs.

4. Crystal data and structures

Figure S15. Crystal structure of P2@TCNB

Figure S16. Crystal structure of P2@TCNB@CHCl₃

Figure S17. Crystal structure of P2@TCNB@CH $_3$ CN

Figure S18. Crystal structure of P2@TCNB@CH $_2$ Br $_2$

Figure S19. Picture of P2@TCNB single crystal

Table 1 Crystal data and structure refinement for P2@TCNB.

Identification code	P2@TCNB
Empirical formula	$C_{83}H_{67}Cl_{4}N_{6}O_{12} \\$
Formula weight	1482.22
Temperature/K	296.15(10)
Crystal system	triclinic
Space group	P-1
a/Å	12.939(2)
b/Å	13.108(2)

c/Å	23.799(4)	
$\alpha/^{\circ}$	95.070(2)	
β/°	92.406(2)	
γ/°	113.497(2)	
Volume/Å ³	3673.8(11)	
7	2	

 $\begin{array}{ccc} Z & 2 & \\ \rho_{calc}g/cm^3 & 1.340 \\ \mu/mm^{-1} & 0.230 \\ F(000) & 1542.0 \end{array}$

Crystal size/mm³ $0.15 \times 0.13 \times 0.11$ Radiation $MoK\alpha (\lambda = 0.71073)$

2Θ range for data collection/° 3.41 to 50.054

Index ranges $-15 \le h \le 15, -15 \le k \le 15, -28 \le 1 \le 28$

Reflections collected 35507

Independent reflections 12938 [$R_{int} = 0.0436$, $R_{sigma} = 0.0642$]

Data/restraints/parameters 12938/302/1073

Goodness-of-fit on F² 0.994

Final R indexes [I>=2 σ (I)] R₁ = 0.0657, wR₂ = 0.1759 Final R indexes [all data] R₁ = 0.1455, wR₂ = 0.2247

Largest diff. peak/hole / e Å-3 0.30/-0.38

Table 2 Crystal data and structure refinement for P2@TCNB@CHCl₃.

Identification code P2@TCNB@CHCl₃

Empirical formula $C_{89}H_{67}Cl_9N_8O_{12}$

Formula weight 1759.55
Temperature/K 296.15(10)
Crystal system triclinic
Space group P-1

a/Å13.062(6)b/Å13.259(6)c/Å13.970(6) $\alpha/^{\circ}$ 70.993(6) $\beta/^{\circ}$ 70.564(6) $\gamma/^{\circ}$ 72.967(6)Volume/ų2110.4(16)

Z 1

 $\begin{array}{lll} \rho_{calc} g/cm^3 & 1.384 \\ \mu/mm^{-1} & 0.366 \\ F(000) & 906.0 \end{array}$

Crystal size/mm³ $0.15 \times 0.13 \times 0.11$ Radiation $MoK\alpha (\lambda = 0.71073)$

 2Θ range for data collection/° 3.196 to 50.054

Index ranges $-15 \le h \le 15, -15 \le k \le 15, -16 \le l \le 16$

Reflections collected 20443

Independent reflections 7439 [$R_{int} = 0.0703$, $R_{sigma} = 0.1264$]

Data/restraints/parameters 7439/401/694

Goodness-of-fit on F² 0.982

Final R indexes [I>= 2σ (I)] $R_1 = 0.0820$, $wR_2 = 0.2156$ Final R indexes [all data] $R_1 = 0.2047$, $wR_2 = 0.2927$

Largest diff. peak/hole / e Å-3 0.44/-0.31

Table 3 Crystal data and structure refinement for P2@TCNB@CH3CN.

Identification code	P2@TCNB@CH ₃ CN
Empirical formula	$C_{85}H_{69}N_8O_{12}$
Formula weight	1394.48
Temperature/K	296.15
Crystal system	triclinic
Space group	P-1
a/Å	12.982(7)
b/Å	13.032(7)
c/Å	23.658(13)
α/°	91.171(8)
β/°	94.196(8)
γ/°	114.981(7)
Volume/Å ³	3612(4)
Z	2
$\rho_{calc}g/cm^3$	1.282
μ /mm ⁻¹	0.087
F(000)	1462.0
Crystal size/mm ³	$0.45\times0.23\times0.2$
Radiation	$MoK\alpha (\lambda = 0.71073)$

 2Θ range for data collection/° 1.728 to 55.206

Index ranges $-16 \le h \le 16, -16 \le k \le 16, -30 \le l \le 30$

Reflections collected 40489

Independent reflections $15989 [R_{int} = 0.0745, R_{sigma} = 0.1036]$

Data/restraints/parameters 15989/48/960

Goodness-of-fit on F² 0.944

Final R indexes [I>= 2σ (I)] $R_1 = 0.0808$, $wR_2 = 0.2106$ Final R indexes [all data] $R_1 = 0.1828$, $wR_2 = 0.2844$

Largest diff. peak/hole / e Å-3 0.37/-0.36

Table 4 Crystal data and structure refinement for P2@TCNB@CH₂Br₂.

Identification code	P2@TCNB@CH ₂ Br ₂
Empirical formula	$C_{165}H_{132}Br_6N_{12}O_{24}$
Formula weight	3146.28
Temperature/K	296.15(10)
Crystal system	triclinic
Space group	P-1
a/Å	12.903(3)
b/Å	13.152(3)
c/Å	23.932(6)
α/°	86.210(3)
β/°	88.225(3)

 γ /° 64.678(3) Volume/Å³ 3663.0(15)

 $\begin{array}{ccc} Z & & 1 \\ \rho_{calc}g/cm^3 & & 1.426 \\ \mu/mm^{-1} & & 1.720 \\ F(000) & & 1608.0 \end{array}$

Crystal size/mm³ $0.15 \times 0.13 \times 0.12$ Radiation $MoK\alpha (\lambda = 0.71073)$

 2Θ range for data collection/° 3.412 to 49.498

Index ranges $-15 \le h \le 15, -15 \le k \le 15, -28 \le 1 \le 28$

Reflections collected 34619

Independent reflections 12528 [$R_{int} = 0.0737$, $R_{sigma} = 0.1096$]

Data/restraints/parameters 12528/142/1025

Goodness-of-fit on F² 1.002

Final R indexes [I>= 2σ (I)] $R_1 = 0.0712$, $wR_2 = 0.1736$ Final R indexes [all data] $R_1 = 0.1947$, $wR_2 = 0.2360$

Largest diff. peak/hole / e Å-3 0.69/-0.62

Table 1 Amount of VOCs absorption by activated P2@TCNB

VOCs	Amount of VOCs over P2
o-Xylene	2.43

m-Xylene	2.20
<i>p</i> -Xylene	3.18
benzene	6.13
toluene	4.54
CH ₃ OH	2.12
CHCl ₃	3.43
CH ₃ CN	13.85
CH ₂ Br ₂	3.87
ethyl acetate	7.65

5. Macrocycle-Based CT Cocrystals Adsorption Experiments

Figure S20. Time-dependent solid-vapor sorption plots of activated P2@TCNB for benzene vapor

