Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supplementary Information

Halogen-containing bridged carborane-tetraphenylethene compound: efficient and wide-range shifted excitation-dependent emissions

Fengjiao Li^a, Yiran Dong^a, Jinling Miao^{*b}, Yong Nie^{*a}, Yujian Zhang^{*c}, Tianrui Li^b, Chunyue Xu^a, Guangning Liu^b, Xuchuan Jiang^{*a}
^aInstitute for Smart Materials & Engineering, University of Jinan, No. 336 Nanxinzhuang West Road, 250022 Jinan, P. R. China
^bSchool of Chemistry and Chemical Engineering, University of Jinan, Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, No. 336 Nanxinzhuang West Road, 250022 Jinan, P. R. China
^cKey Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, No. 688 Yingbin Road, Jinhua 321004, P. R. China
E-mail: chm_niey@ujn.edu.cn, chm_miaojl@ujn.edu.cn, ism_jiangxc@ujn.edu.cn, Yujian1985@zjnu.edu.cn

Table of contents

Experimental section

Table. S1 Crystal data and structure refinement for 1

Table. S2 Selected bond lengths, angles and torsion angles for 1

Table. S3 Weak interaction in crystals of compound 1

Fig. S1-11 Structural characterization of compounds 1-2

Fig. S12 Frontier orbitals and the energy level of compound 1-2 (B3LYP/ 6-31g (d, p) level)

Fig. S13 Absorption spectrum of 1 in tetrahydrofuran calculated by TD-DFT method

Table. S4 Excitation energy and transitions of 1 in tetrahydrofuran calculated by TD-DFT method

Fig. S14 Absorption spectrum of 2 in tetrahydrofuran calculated by TD-DFT method

Table. S5 Excitation energy and transitions of 2 in tetrahydrofuran calculated by TD-DFT method

Fig. S15 Excitation spectra of powder 1 at different emission wavelengths

Fig. S16 Excitation spectrum of crystals of 1

Fig. S17 Excitation spectrum of amorphous 1

Fig. S18 Fluorescence decay curve of crystals of 1 ($\lambda_{ex} = 340 \text{ nm}, \lambda_{em} = 408 \text{ nm}$)

Fig. S19 Fluorescence decay curve of powder 1 ($\lambda_{ex} = 380 \text{ nm}, \lambda_{em} = 467 \text{ nm}$)

Fig. S20 Fluorescence decay curve of amorphous 1 ($\lambda_{ex} = 390 \text{ nm}, \lambda_{em} = 480 \text{ nm}$)

Fig. S21 CIE chromaticity diagrams of 1 (powder), 1 (ground), 1 (fumed) and 1 (annealed)

- Fig. S22. Emission spectra of compound **1** (a) powder, (b) ground, (c) ground-CH₂Cl₂ fumigation, (d) ground-annealed at different excitation wavelengths
- Fig. S23. Emission spectra of compound 1 (a) crystal and (b) amorphous form at different excitation wavelengths
- Fig. S24. Emission spectra of compound 2 (ground) at different excitation wavelengths (a: normalized, b: unnormalized)
- Fig. S25 Excitation spectrum of powder 2
- Fig. S26 Fluorescence decay curve of powder 2 ($\lambda_{ex} = 360 \text{ nm}, \lambda_{em} = 450 \text{ nm}$)

Table S6 Some photophysical data of compounds 1 and 2

Experimental section General

Standard Schlenk techniques were used for the synthetic reactions under Ar. Dichloromethane was (DCM) dried with calcium hydride,, and other solvents were commercially available and used without further purification. IR spectra were recorded in the range 400-4000 cm⁻¹ on a Perkin Elmer Spectrum RX I spectrometer using KBr pellets. NMR analyses were performed on a Bruker Avance III 600 MHz and 400 MHz spectrometer. ¹⁹F-NMR and ¹¹B-NMR spectra were recorded in dichloromethane solutions (D₂O was added for locking) on a Bruker AVANCE III 500 spectrometer. As internal references for ¹H- and ¹³C-NMR spectroscopy the signals of CDCl₃ were used and calculated relative to tetramethylsilane (TMS). Melting points were measured with a SGW X-4 apparatus and are not corrected. The high resolution mass spectra were measured on a Thermo Fisher Scientific LTQ FTICR-MS instrument (DART positive ion mode or ESI negative ion mode) and Waters Micromass GCT Premier (EI (70eV)). UV-Vis spectra were recorded on a UV3600 Plus spectrometer. Emission spectra were measured on Edinburgh FLS920 and FLS1000 fluorimeters, using a front-face sample configuration for solid samples. Absolute fluorescence quantum yields were obtained using an integrating sphere.

Synthesis of compound 1

Under argon, the starting carboranylmethanol compound (103.7 mg, 0.2 mmol) and 5 mL of dry CH_2Cl_2 were added into a Schlenk tube and stirred, to this solution was added 0.5 mL of $SOCl_2$ (6.9 mmol) via syringe. The reaction mixture was heated at 45 °C (oil bath) for 24 h, during which time the reaction was completed as monitored by TLC. The reaction mixture was poured into a cold saturated aqueous solution of K_2CO_3 (20 mL) and separated. The water phase was extracted with CH_2Cl_2 (3 × 20 mL) and the combined organic phases were dried with anhydrous Na₂SO₄. After filtration and concentration the solution was separated by preparative TLC (eluent: EtOAc: hexane =

1:5, V/V to give a yellow oil, which solidified after adding 2 mL of CH₂Cl₂ and cured for 24 h to afford compound 1 as a white solid.

1: 52.8 mg, yield 48.8%; *m.p.* 149.7 °C; $R_f = 0.82$ (EtOAc: hexane = 1:5, V/V); IR (KBr, v/cm^{-1}): 3055, 2924, 2588 (BH), 1597, 1491, 1441, 1248, 847, 768, 741, 700; ¹H NMR (600 MHz, CDCl₃) δ 7.20 - 7.12 (m, 10 H, ArH), 7.04 - 7.02 (m, 5 H, ArH), 6.97 - 6.96 (m, 2 H, ArH), 6.87, 6.85 (t, J = 9.32 Hz, 1H, ArH), 5.76 (s, 1 H, CHCl), 3.54 (s, 1 H, C_{cage} H); ¹³C NMR (151 MHz, CDCl₃) δ : 158.10, 156.45, 143.07, 142.97, 142.85, 142.19, 141.05, 138.76, 134.56 (d, J = 7.55 Hz), 132.27, 131.29, 131.17 (d, J = 9.06 Hz), 128.20, 127.96, 127.78, 127.26, 126.87 (d, J = 6.04 Hz), 123.83 (d, J = 12.05 Hz), 115.22, 115.08, 76.50, 61.05, 54.12; ¹¹B{¹H} NMR (128 MHz, CH₂Cl₂): δ -3.22 (1B), -4.43 (1B), -8.68 (1B), -9.33 (1B), -10.74 (1B), -11.73 (1B), -12.75 (2B), -14.00 (2B); ¹⁹F NMR (377 MHz, CH₂Cl₂) δ : -119.46; ESI-MS m/z(%): calcd. for C₂₉H₂₉B₁₀FCl, 541.2878 [M-H]⁻, found 541.2875.

Under argon, the starting carboranylmethanol compound (100.9 mg, 0.2 mmol) and 5 mL of dry CH_2Cl_2 were added into a Schlenk tube and stirred, to this solution was added 0.5 mL of $SOCl_2$ (6.9 mmol) via syringe. The reaction mixture was heated at 45 °C (oil bath) for 24 h, during which time the reaction was completed as monitored by TLC. The reaction mixture was poured into a cold saturated aqueous solution of K_2CO_3 (20 mL) and separated. The water phase was extracted with CH_2Cl_2 (3 × 20 mL) and the combined organic phases were dried with anhydrous Na₂SO₄. After filtration and concentration the solution was separated by preparative TLC (eluent: EtOAc: hexane = 1:5, V/V) to give a yellow oil, which solidified after adding 2 mL of CH_2Cl_2 and cured for 24 h to afford compound **2** as a white solid.

2: 75.2 mg, yield 72.0%; *m.p.* 175.2 °C; $R_f = 0.84$ (EtOAc: hexane = 1:5, *V/V*) ; IR (KBr, v/cm⁻¹): 3053, 2922, 2851, 2578(BH), 1597, 1489, 1441, 1096, 1020, 758, 698; ¹H NMR (600 MHz, CDCl₃) δ 7.16 (t, *J* = 7.6 Hz, 1H, ArH), 7.11 (m, 10H, ArH), 7.09 (d, *J* = 7.6 Hz, 1H, ArH), 7.04 - 7.01 (m, 10H, ArH), 7.09 (d, *J* = 7.6 Hz, 1H, ArH), 7.04 - 7.01 (m, 10H, ArH), 7.09 (d, *J* = 7.6 Hz, 1H, ArH), 7.04 - 7.01 (m, 10H, ArH), 7.09 (d, *J* = 7.6 Hz, 1H, ArH), 7.04 - 7.01 (m, 10H, ArH), 7.09 (d, *J* = 7.6 Hz, 1H, ArH), 7.04 - 7.01 (m, 10H, ArH), 7.09 (d, *J* = 7.6 Hz, 1H, ArH), 7.04 - 7.01 (m, 10H, ArH), 7.09 (d, *J* = 7.6 Hz, 1H, ArH), 7.04 - 7.01 (m, 10H, ArH), 7.09 (d, *J* = 7.6 Hz, 1H, ArH), 7.04 - 7.01 (m, 10H, ArH), 7.09 (d, *J* = 7.6 Hz, 1H, ArH), 7.04 - 7.01 (m, 10H, ArH), 7.09 (d, *J* = 7.6 Hz, 1H, ArH), 7.04 - 7.01 (m, 10H, ArH), 7.09 (d, *J* = 7.6 Hz, 1H, ArH), 7.04 - 7.01 (m, 10H, ArH), 7.09 (d, *J* = 7.6 Hz, 1H, ArH), 7.04 - 7.01 (m, 10H, ArH), 7.09 (d, *J* = 7.6 Hz, 1H, ArH), 7.04 - 7.01 (m, 10H, ArH), 7.09 (d, *J* = 7.6 Hz, 1H, ArH), 7.04 - 7.01 (m, 10H, ArH), 7.09 (d, *J* = 7.6 Hz, 1H, ArH), 7.04 - 7.01 (m, 10H, ArH), 7.09 (d, *J* = 7.6 Hz, 1H, ArH), 7.04 - 7.01 (m, 10H, ArH), 7.09 (d, *J* = 7.6 Hz, 1H, ArH), 7.04 - 7.01 (m, 10H, ArH), 7.09 (d, *J* = 7.6 Hz, 1H, ArH), 7.04 - 7.01 (m, 10H, ArH), 7.01 (m,

5H, ArH), 6.97 (m, 2H, ArH), 5.26 (s, 1H, CHCl), 3.54 (s, 1H, $C_{cage}H$);¹³C NMR (151 MHz, CDCl₃) δ 144.85, 143.20, 143.07, 143.04, 142.14, 139.60, 136.01, 132.94, 131.33, 131.24, 131.19, 130.80, 128.37, 128.05, 127.88, 127.76, 126.78, 126.76, 126.04, 62.45, 61.17; ¹¹B{¹H} NMR (128 MHz, CH₂Cl₂): δ -3.35 (1B), -4.38 (1B), -8.64 (1B), -9.32 (1B), -10.51 (1B), -11.81 (1B), -12.80 (2B), -14.01 (2B); DART-MS m/z(%): calcd. for C₂₉H₃₂B₁₀Cl [M+H]⁺, 525.3188, found 525.3162.

Compound	1
Empirical formula	$C_{29}H_{30}B_{10}ClF$
Formula weight	541.08
Temperature/K	293(2)
Crystal system	monoclinic
Space group	C2/c
a/Å	14.1612(4)
b/Å	12.8676(4)
c/Å	31.9346(10)
α/\circ	90
β/°	98.367(3)
$\gamma/^{\circ}$	90
Volume/Å ³	5757.2(3)
Z	8
$\rho_{calc}g/cm^3$	1.248
μ/mm^{-1}	0.159
F(000)	2240
Crystal size/mm ³	$0.2 \times 0.18 \times 0.08$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data	4.298 to 56.562
collection/°	
Index ranges	$-16 \le h \le 18, -17 \le k \le 17,$
	$-42 \le l \le 42$
Reflections collected	8724
Independent reflections	$8724 [R_{int} = , R_{sigma} =$
	0.0296]
Data/restraints/parameters	8724/0/373
Goodness-of-fit on F ²	1.123
Final R indexes [I>=2σ	$R_1 = 0.0746, wR_2 = 0.2028$
(I)]	
Final R indexes [all data]	$R_1 = 0.0823, wR_2 = 0.1816$
Largest diff. peak/hole / e Å ⁻³	0.478/-0.515
CCDC deposition number	2304126

Table S1 Crystal data and structure refinement for 1

bond lengths (Å)		bond angles [°]		torsion angles [°]	
C1-C2	1.394	C1-C2-C3	120.07	C1-C2-C3-C4	-1.09
C2-C3	1.398	C2-C3-C4	119.93	C6-C1-C7-C8	-48.54
C3-C4	1.380	C1-C7-C8	114.77	C1-C7-C8-C9	-48.20
C1-C7	1.499	C7-C8-C13	122.75	C8-C7-C14-C21	-6.43
C7-C8	1.498	C7-C8-C9	118.57	C26-C25-C27-Cl1	-39.60
C8-C9	1.403	C8-C7-C14	122.79	C27-C25-C24-F1	2.30
C7-C14	1.349	C25-C27-C28	114.88	Cl1-C27-C28-C29	20.89
C14-C21	1.505	C24-C25-C27	119.51		
C21-C22	1.386	C25-C27-Cl1	110.01		
C23-C24	1.383	C27-C28-C29	120.98		
C24-F1	1.355				
C25-C27	1.505				
C27-C28	1.545				
C28-C29	1.641				
C27-Cl1	1.791				

 Table S2. Selected bond lengths, angles and torsion angles for 1

Table S3 Weak interactions in crystals of compound 1						
D–H····A	d(H····A) [Å]	d(D…A) [Å]	\angle (D–H···A)			
			[°]			
B(4)-H(4A)····Cg(1)	2.642	3.645	151.17			
C(29)-H(29)····Cl(1)	2.738	3.118	99.76			
C(26)-H(26)····Cl(1)	2.774	3.073	99.83			
C(27)-H(27)F(1)	2.333	2.772	106.24			
C(5)-H(5)····Cg(2)	2.870	3.596	135.8			
$C(24)-F(1)\cdots Cg(1)$	3.456	4.579	140.14			
C(29)-H(29)····H(7)-B7	2.267	2.982	120.65			

Cg(1): (C8, C9, C10, C11, C12, C13), Cg(2): (C21, C22, C23, C24, C25, C26)

Fig. S2. ¹H-NMR spectrum of 1 in CDCl₃

Fig. S4. ${}^{11}B{}^{1}H$ -NMR spectrum of 1 in CH_2Cl_2

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 fl (ppm)

Fig. S5. ¹⁹F-NMR spectrum of 1 in CH₂Cl₂

Fig. S6. High resolution mass spectrum of 1 (top: experimental, bottom: theoretical)

Fig. S8. ¹H-NMR spectrum of 2 in CDCl₃

Fig. S10. $^{11}B{^{1}H}$ -NMR spectrum of 2 in CH₂Cl₂

Figure S11 High resolution mass spectrum of 2 (top: experimental, bottom: theoretical)

Reference for the Gaussian package for the DFT calculations:

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT, 2009.

Fig. S12 Frontier orbitals and energy levels of compounds 1-2 (B3LYP/ 6-31g (d, p) level)

Fig. S13 Absorption spectrum of 1 in tetrahydrofuran calculated by TD-DFT method Table S4 Excitation energy and transitions of 1 in tetrahydrofuran calculated by TD-DFT method^a

state	E (eV)	λ (nm)	f	transitions
1	3.6303	341.53	0.3856	HOMO→LUMO (99.1%)
2	3.7614	329.62	0.0265	HOMO→LUMO + 1 (97.7%)
3	4.3870	282.62	0.1521	HOMO - 5→LUMO (2.8%)

					HOMO→LUMO + 2 (90.3%)
	4	4.5075	275.06	0.0325	HOMO - 1→LUMO (34.0%)
					HOMO→LUMO + 2 (4.0%)
					HOMO→LUMO + 3 (36.1%)
					HOMO→LUMO + 4 (11.1%)
					HOMO→LUMO + 5 (4.0%)
					HOMO→LUMO + 6 (2.7%)
	5	4.5552	272.18	0.0093	HOMO - 3→LUMO (2.3%)
					HOMO - 1→LUMO (42.5%)
					HOMO→LUMO + 3 (36.7%)
					HOMO→LUMO + 4 (4.3%)
					HOMO→LUMO + 5 (9.5%)
6		4.6127	268.79	0.0038	HOMO - 2→LUMO (79.2%)
					HOMO - 2→LUMO + 1 (2.2%)
					HOMO→LUMO + 4 (2.2%)
					HOMO→LUMO + 7 (2.3%)
					HOMO→LUMO + 8 (6.6%)
7		4.6955	264.05	0.0098	HOMO - 4→LUMO (5.1%)
					HOMO - 3→LUMO (9.8%)
					HOMO→LUMO + 3 (19.6%)
					HOMO→LUMO + 4 (39.8%)
					HOMO→LUMO + 5 (13.1%)
					HOMO→LUMO + 6 (7.1%)
	8	4.7059	263.47	0.0015	HOMO - 4→LUMO (5.8%)
					HOMO - 3→LUMO (46.5%)
					HOMO - 2→LUMO (1.1%)
					HOMO - 1→LUMO (3.1%)
					HOMO→LUMO + 4 (9.8%)
					HOMO→LUMO + 5 (2.9%)
					HOMO→LUMO + 6 (4.9%)
					HOMO→LUMO + 7 (16.9%)
	9	4.7684	260.01	0.0254	HOMO - 3→LUMO (9.7%)
					HOMO - $1 \rightarrow LUMO(13.3\%)$
					HOMO→LUMO + 5 (59.3%)
					HOMO \rightarrow LUMO + 6 (5.4%)
	10	4.8626	254.98	0.0227	HOMO - 7→LUMO (2.8%)
					HOMO - 4→LUMO (4.8%)
					HOMO - 4→LUMO + 1 (2.3%)
					HOMO - 2 \rightarrow LUMO + 1
					(7.9%)
					HOMO - 1→LUMO + 1 (62.0%)
					HOMO \rightarrow LUMO + 4 (4.3%)
					HOMO \rightarrow LUMO + 7 (3.7%)
					× /

^acalculated at the B3LYP/6-31G (d,p) level of theory.

Fig. S14 Absorption spectrum of 2 in tetrahydrofuran calculated by TD-DFT method

state	E (eV)	λ (nm)	f	transitions
1	3.6127	343.19	0.4038	HOMO→LUMO (99.1%)
2	3.8500	322.03	0.0176	HOMO→LUMO + 1 (97.2%)
3	4.3683	283.83	0.1669	HOMO→LUMO + 2 (91.6%)
4	4.5055	275.18	0.0324	HOMO - 1→LUMO (42.9%)
				HOMO→LUMO + 3 (22.0%)
				HOMO→LUMO + 4 (17.2%)
				HOMO→LUMO + 5 (7.5%)
5	4.5569	272.08	0.0180	HOMO - 3→LUMO (4.4%)
				HOMO - 1→LUMO (29.4%)
				HOMO→LUMO + 3 (37.0%)
				HOMO→LUMO + 4 (11.5%)
				HOMO→LUMO + 5 (11.5%)
6	4.6013	269.45	0.0039	HOMO - 2→LUMO (79.3%)
				HOMO - 1→LUMO (2.8%)
				HOMO→LUMO + 8 (6.5%)
7	4.6747	265.22	0.0009	HOMO - 4→LUMO (3.6%)
				HOMO - 3→LUMO (57.2%)
				HOMO - 2→LUMO (5.1%)
				HOMO - 1→LUMO (3.3%)
				HOMO→LUMO + 4 (2.2%)
				HOMO \rightarrow LUMO + 5 (6.1%)
				HOMO \rightarrow LUMO + 6 (3.9%)
				HOMO→LUMO + 7 (10.9%)
8	4.7012	263.73	0.0040	HOMO - 4→LUMO (9.4%)
				HOMO - 3→LUMO (6.6%)
				HOMO - 1→LUMO (2.4%)
				$HOMO \rightarrow LUMO + 3$
				(28.3%)
				HOMO→LUMO + 4 (33.8%)

Table S5 Excitation energy and transitions of 2 in tetrahydrofuran calculated by TD-DFT method^a

9	4.7608	260.43	0.0349	HOMO - 3→LUMO (6.8%)
				HOMO - 1→LUMO (13.6%)
				HOMO→LUMO + 4
				(2.5%)
				HOMO→LUMO + 5 (68.3%)
10	4.8663	254.78	0.0023	HOMO - 5→LUMO (2.8%)
				HOMO - 4→LUMO (32.5%)
				HOMO - 3→LUMO (17.4%)
				HOMO - 1 \rightarrow LUMO + 1
				(2.4%)
				HOMO \rightarrow LUMO + 3 (4.3%)
				HOMO→LUMO + 4 (22.9%)
				HOMO→LUMO + 6 (16.3%)
				HOMO→LUMO + 7 (3.6%)

^acalculated at the B3LYP/6-31G (d,p) level of theory.

Fig. S15. Excitation spectra of powder 1 at different emission wavelengths

Fig. S16. Excitation spectrum of crystals of 1

Fig. S17. Excitation spectrum of amorphous 1

Fig. S18. Fluorescence decay curve of crystals of 1 ($\lambda_{ex} = 340 \text{ nm}, \lambda_{em} = 408 \text{ nm}$)

Fig. S19. Fluorescence decay curve of powder of 1 ($\lambda_{ex} = 380 \text{ nm}, \lambda_{em} = 467 \text{ nm}$)

Fig. S20. Fluorescence decay curve of amorphous 1 ($\lambda_{ex} = 390 \text{ nm}, \lambda_{em} = 480 \text{ nm}$)

Fig. S21. CIE chromaticity diagrams of 1 (powder), 1 (ground), 1 (fumed) and 1 (annealed)

Fig. S22. Emission spectra of compound **1** (a) powder, (b) ground, (c) ground-CH₂Cl₂ fumigation, (d) ground - heated annealing at different excitation wavelengths

Fig. S23. Emission spectra of compound 1 (a) crystal and (b) amorphous form at different excitation wavelengths

Fig. S24. Emission spectra of compound 2 (ground) at different excitation wavelengths (a: normalized, b: unnormalized)

Fig. S25. Excitation spectrum of powder 2

Fig. S26. Fluorescence decay curve of powder 2 ($\lambda_{ex} = 360 \text{ nm}, \lambda_{em} = 450 \text{ nm}$)

Table S6 Some photophysical data of compounds 1-2							
	$\lambda_{abs}{}^a$	$arPhi^{ ext{b}}$	$\tau (\mathrm{ns})^{\mathrm{b}}$	$k_r^{\ c}(s^{-1})$	$k_{nr}^{d}(s^{-1})$		
	(nm)						
1	218,308	0.54 ^e	3.22	1.68×10 ⁸	1.42×10^{8}		
2	226, 310	0.39^{f}	2.96	1.45×10^{8}	1.93×10 ⁸		

^aMeasured in THF, 1×10⁻⁵; ^bpowder; ${}^{c}k_{r} = \phi/\tau$; ${}^{d}k_{nr} 1/\tau - k_{r}$; ${}^{e}\lambda_{ex} = 340$ nm.