Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supplementary information

Enhanced photocatalytic hydrogen evolution from cation modified single perovskite niobates in the absence of noble metal cocatalysts

Preeti Dahiya^a and Tapas Kumar Mandal*^{a,b}

Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee – 247667, India.

Center for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee – 247667, India

Table S1. Composition and synthesis temperature for $Na_{0.5}Sr_{0.5}M_{0.25}Nb_{0.75}O_3$ (M = Cr, Mn, Fe,and Co).

Sr. No.	Chemical composition	Synthesis condition	Colour
1.	Na _{0.5} Sr _{0.5} Cr _{0.25} Nb _{0.75} O ₃	850 °C/12 h; 950 °C/12 h; 1000 °C/24h	N.S.
		in air	100
2.	Na0.5Sr0.5Mn0.25Nb0.75O3	850 °C/12 h; 950 °C/12 h; 1000 °C/24h	and the
		in air	
3.	Na0.5Sr0.5Fe0.25Nb0.75O3	850 °C/12 h; 950 °C/12 h; 1000 °C/24h	JANE .
		in air	P ARK
4.	Na0.5Sr0.5C00.25Nb0.75O3	850 °C/12 h; 950 °C/12 h; 1000 °C/24h	-
		in air	

Table S2. Position, thermal and occupancy parameters for $Na_{0.5}Sr_{0.5}M_{0.25}Nb_{0.75}O_3$ (M = Cr, Mn, Fe, and Co).

Wyckoff	Atom	Position	M = Cr	M = Mn	M = Fe	M = Co	Occupancy
4c	Na/Sr	Х	0	0	0	0	0.5
		у	0	0	0	0	
		Z	0	0	0	0	
		В	0.671(1)	0.607(1)	0.364(1)	0.163(1)	
4b	M/Nb	Х	0.5	0.5	0.5	0.5	0.25/0.75
		у	0.5	0.5	0.5	0.5	
		Z	0.5	0.5	0.5	0.5	
		В	0.095(2)	0.596(1)	0.038(2)	0.396(1)	
4c	01	Х	0	0	0	0.0	1
		у	0.5	0.5	0.5	0.5	
		Z	0.5	0.5	0.5	0.5	
		В	1.109(1)	2.131(1)	1.557(1)	2.577(1)	

Parameters M = CrM = MnM = FeM = Coa = b = c (Å)3.9394(1) 3.9554(1) 3.9502 (1) 3.9721(1) 3.15 2.22 3.07 R_{Bragg} (%) 1.61 2.59 **R**_f (%) 1.52 2.69 1.89 $R_{p}(\%)$ 4.14 5.32 4.47 3.49 7.52 5.23 Rwp (%) 5.49 6.27 χ^2 3.47 6.28 5.49 5.42

Table S3. Refined cell parameters and reliability factors for $Na_{0.5}Sr_{0.5}M_{0.25}Nb_{0.75}O_3$ (M = Cr,Mn, Fe, and Co).

Table S4. Bond distances for $Na_{0.5}Sr_{0.5}M_{0.25}Nb_{0.75}O_3$ (M = Cr, Mn, Fe, and Co).

		Bond dis	tance (Å)	
Type of Bond	Cr	Mn	Fe	Со
M/Nb-O1 × 6	1.9697(1)	1.9777(1)	1.9751(2)	1.9860(2)

Table S5. Tolerance factor *t* for Na_{0.5}Sr_{0.5}M_{0.25}Nb_{0.75}O₃ (M = Cr, Mn, Fe, and Co).

Compound Na _{0.5} Sr _{0.5} M _{0.25} Nb _{0.75} O ₃	Tolerance factor <i>t</i> Low spin	Tolerance factor <i>t</i> High spin
M = Cr	0.9789	0.9789
M = Mn	0.9831	0.9753
M = Fe	0.9868	0.9753
M = Co	0.9874	0.9795

Fig. S1 Raman Spectra of NaNbO₃ and Na_{0.5}Sr_{0.5}M_{0.25}Nb_{0.75}O₃ (M = Cr, Mn, Fe, and Co).

Fig. S2 (a-b) FE-SEM and (c) EDX data for NaNbO₃.

Fig. S3 EDX analysis of the $Na_{0.5}Sr_{0.5}M_{0.25}Nb_{0.75}O_3$ (M = Cr, Mn, Fe, and Co).

Table S6. Compositions of the $Na_{0.5}Sr_{0.5}M_{0.25}Nb_{0.75}O_3$ (M = Cr, Mn, Fe, and Co) determined by ICP-MS.

Compound	Na	Sr	Μ	Nb
NaNbO ₃	1			0.99
Na0.5Sr0.5Cr0.25Nb0.75O3	0.49	0.48	0.23	0.73
Na0.5Sr0.5Mn0.25Nb0.75O3	0.49	0.48	0.23	0.74
Na0.5Sr0.5Fe0.25Nb0.75O3	0.48	0.49	0.24	0.73
Na0.5Sr0.5C00.25Nb0.75O3	0.48	0.49	0.23	0.73

Fig. S4. BET adsorption isotherm for NaNbO₃ and Na_{0.5}Sr_{0.5}M_{0.25}Nb_{0.75}O₃ (M = Cr, Mn, Fe, and Co).

Table S7. The specific surface area of $Na_{0.5}Sr_{0.5}M_{0.25}Nb_{0.75}O_3$ (M = Cr, Mn, Fe, and Co).

Compound	Specific surface area (m ² /g)
NaNbO ₃	0.73
Na0.5Sr0.5Cr0.25Nb0.75O3	6.60
Na0.5Sr0.5Mn0.25Nb0.75O3	1.70
Na _{0.5} Sr _{0.5} Fe _{0.25} Nb _{0.75} O ₃	3.10
Na0.5Sr0.5C00.25Nb0.75O3	5.37

Fig. S5 UV-Vis DRS absorption spectra and the corresponding Tauc plot (inset) of NaNbO₃.

Compounds	Band gap (eV)			
	E _g (1)	E _g (2)		
NaNbO ₃	3.39			
Na0.5Sr0.5Cr0.25Nb0.75O3	2.17			
Na0.5Sr0.5Mn0.25Nb0.75O3	1.75	2.15		
Na0.5Sr0.5Fe0.25Nb0.75O3	2.07	2.45		
Na0.5Sr0.5C00.25Nb0.75O3	2.0			

Table S8. Band gap data of $Na_{0.5}Sr_{0.5}M_{0.25}Nb_{0.75}O_3$ (M = Cr, Mn, Fe, and Co).

Fig. S6 XPS Survey spectra of $Na_{0.5}Sr_{0.5}M_{0.25}Nb_{0.75}O_3$ (M = Cr, Mn, Fe, and Co).

Table S9. XPS binding energies (in eV) of Na 1s, Sr 2p, M 2p and Nb 3d forNa0.5Ca0.5M0.25Nb0.75O3 (M = Cr, Mn, Fe, and Co).

	Na 1s	Sr 2p		M 2p		Nb 3d	
		2p _{3/2}	$2p_{1/2}$	2p _{3/2}	$2p_{1/2}$	3d _{5/2}	$3d_{3/2}$
$Na_{0.5}Sr_{0.5}Cr_{0.25}Nb_{0.75}O_3$	1070.8	132.3	134.0	575.9	585.8	206.2	208.9
$Na_{0.5}Sr_{0.5}Mn_{0.25}Nb_{0.75}O_3$	1070.8	132.2	134.0	640.3	652.3	206.2	208.9
$Na_{0.5}Sr_{0.5}Fe_{0.25}Nb_{0.75}O_3$	1071.5	132.8	134.6	711.3	724.9	206.5	209.2
Na _{0.5} Sr _{0.5} Co _{0.25} Nb _{0.75} O ₃	1071.5	132.9	134.8	780	796.5	206.7	209.4
				777.5	794.2		

Table S10. EIS circuit fitting parameters.

Compound	Circuit Elements Value						
	$\mathbf{R}_{s}(\mathbf{\Omega})$	$\mathbf{R}_{\mathrm{ct}}(\mathbf{\Omega})$	CPE ₁	$\mathbf{R}_1(\mathbf{\Omega})$	CPE ₂		
Na0.5Sr0.5Cr0.25Nb0.75O3	0.05	1850	5.1935E-05	51.508	7.1423E-08		
Na0.5Sr0.5Mn0.25Nb0.75O3	2.65	4148	6.6297E-05	50.781	1.8460E-07		
Na0.5Sr0.5Fe0.25 Nb0.75O3	0.10	2401	2.0850E-04	47.125	3.7394E-07		
Na0.5Sr0.5C00.25Nb0.75O3	2.54	2198	4.2144E-05	56.277	1.0311E-07		

Fig. S7 Steady-state photoluminescence spectra of NaNbO₃ and Na_{0.5}Sr_{0.5}M_{0.25}Nb_{0.75}O₃ (M = Cr, Mn, Fe, and Co)

Fig. S8 PXRD data of Na0.5Sr0.5Cr0.25Nb0.75O3 before and after photocatalysis.

Fig. S9 FE-SEM images of Na_{0.5}Sr_{0.5}Cr_{0.25}Nb_{0.75}O₃ before and after photocatalysis.

Fig. S10 Binding energy of the Na_{0.5}Sr_{0.5}Cr_{0.25}Nb_{0.75}O₃ for Cr 2p, Na 1s, Sr 3d and Nb 3d before and after photocatalysis.

Table S11. Comparative assessment of the photocatalytic activity of $Na_{0.5}Sr_{0.5}M_{0.25}Nb_{0.75}O_3$ (M = Cr, Fe and Co) with other catalysts reported in literature.

S.	Photocatalyst	Co-	Light source	Sacrificial	H ₂ evolved	Ref.
No.	·	catalyst	C	agent	(µmol h ⁻¹ g ⁻¹⁾	
1.	Na _{0.5} Sr _{0.5} Cr _{0.25} Nb _{0.75} O ₃	None	250W Medium Pressure	Methanol	188	This
			Hg-vapor lamp	(20 vol %)		work
2.	Na _{0.5} Sr _{0.5} Co _{0.25} Nb _{0.75} O ₃	None	250W Medium Pressure	Methanol	62	This
			Hg-vapor lamp	(20 vol %)		work
3.	$Na_{0.5}Sr_{0.5}Fe_{0.25}Nb_{0.75}O_3$	None	250W Medium Pressure	Methanol	54.6	This
			Hg-vapor lamp	(20 vol %)		work
4.	CaTiO ₃ : Rh	Pt	300-W Xe lamp	Methanol	28.3	[1]
			$(\lambda > 420 \text{ nm})$			
5.	Mo-doped BaTiO ₃	Pt	300 W Xe lamp	Aqueous	63	[2]
				methyl		
				alcohol		
				solution		
6.	CdSe QDs/BaTiO ₃	None	300 W Xe lamp	Na_2SO_3 and	53.4	[3]
			$(\lambda > 420 \text{ nm})$	Na_2S		
7.	Cu doped- PbTiO ₃	None	125 W, medium pressure	Methanol	90	[4]
			Hg lamp	(10 vol %)		
8.	PbTiO ₃ /LaCrO ₃	None	150W Xe lamp, $\lambda \ge 400$	Methanol	171.7	[5]
			nm	(10 vol %)		
9.	SrTiO ₃ :Rh	Pt	300-W Xe lamp	Methanol	390	[6]
			$(\lambda > 440 \text{ nm})$			
10.	SrTiO ₃ : Ir	Pt	300-W Xe lamp	Methanol	28.7	[6]
			$(\lambda > 440 \text{ nm})$			
11.	SrTiO3: Ni/Ta	None	Xe lamp	Methanol	2.4	[7]
12.	SrTiO ₃ : Cr/Sb	None	Xe lamp	Methanol	78	[8]
13.	Cr, Ta co-doped	Pt	300 W Xe lamp	Methanol	122.6	[9]
	SrTiO ₃		$(\lambda > 420 \text{ nm})$	(10 vol %)		
14.	La ₂ Ti ₂ O ₇ : Cr	Pt	500-W Hg lamp	Methanol	30	[10]
			$(\lambda > 420 \text{ nm})$			
15.	La ₂ Ti ₂ O ₇ : Fe	Pt	500-W Hg lamp	Methanol	20	[10]
			$(\lambda > 420 \text{ nm})$			
16.	Ag-NaTaO ₃	None	300 W Xe lamp	Methanol	3.54	[11]
				(25 vol %)		
17.	Ag-KTaO ₃	None	300 W Xe lamp	Methanol	185.60	[11]
				(25 vol %)		
18.	NaTaO ₃ : La/Cr	Pt	300 W Xe lamp	Methanol	4.4	[12]
			$(\lambda > 420 \text{ nm})$	(20 vol%)		
19.	g-C ₃ N ₄ /SrTa ₂ O ₆	Pt	300 W Xe lamp	TEOA	37.2	[13]
			$(\lambda > 420 \text{ nm})$	(5 vol %)		
20.	CdS/Ni/KNbO ₃	None	500 W lamp	Methanol	23.5	[14]
			-	(50 vol %)		_
21.	SnNb ₂ O ₆ nanosheets	Pt	300 W Hg-arc lamp	Lactic acid	264	[15]
			$(\lambda \ge 420 \text{ nm})$	(20 vol%)		_
22.	LaFeO ₃ /g-C ₃ N ₄	NiS	300 W Xe lamp	Ethanol	121.0	[16]
23.	Sr _{0.85} Bi _{0.15} Ti _{0.85} Cr _{0.15} O ₃	Pt	300 W Xe lamp	Methanol	3.7	[17]
			$(\lambda > 420 \text{ nm})^{2}$	(10 vol %)		
24.	Sr ₂ Ti _{0.9} Cr _{0.1} O _{4-δ}	Pt	500 W high-pressure Hg	Na ₂ SO ₃	17.0	[18]
			lamp			_

25.	$Sr_{2}Ti_{0.95}Cr_{0.05}O_{4-\delta}$	Pt	500 W high-pressure Hg	Na_2SO_3	97.7	[18]
			lamp			

REFERENCES

- S. Nishimoto, M. Matsuda, M. Miyake, Photocatalytic Activities of Rh-doped CaTiO₃ under Visible Light Irradiation, Chem. Lett. 35 (2006) 308–309. https://doi.org/10.1246/cl.2006.308.
- P. Xie, F. Yang, R. Li, C. Ai, C. Lin, S. Lin, Improving hydrogen evolution activity of perovskite BaTiO₃ with Mo doping: Experiments and first-principles analysis, Int. J. Hydrog. Energy 44 (2019) 11695–11704. https://doi.org/10.1016/j.ijhydene.2019.03.145.
- [3] D. Zhong, W. Liu, P. Tan, A. Zhu, Y. Liu, X. Xiong, J. Pan, Insights into the synergy effect of anisotropic {001} and {230} facets of BaTiO₃ nanocubes sensitized with CdSe quantum dots for photocatalytic water reduction, Appl. Catal. B Environ. 227 (2018) 1–12.
- [4] K.H. Reddy, K. Parida, Fabrication, Characterization, and Photoelectrochemical Properties of Cu-Doped PbTiO₃ and Its Hydrogen Production Activity, ChemCatChem 5 (2013) 3812–3820. https://doi.org/10.1002/cctc.201300462.
- [5] L. Paramanik, K.H. Reddy, S. Sultana, K. Parida, Architecture of Biperovskite-Based LaCrO₃/PbTiO₃ p–n Heterojunction with a Strong Interface for Enhanced Charge Antirecombination Process and Visible Light-Induced Photocatalytic Reactions, Inorg. Chem. 57 (2018) 15133–15148. https://doi.org/10.1021/acs.inorgchem.8b02364.
- [6] R. Konta, T. Ishii, H. Kato, A. Kudo, Photocatalytic activities of noble metal ion doped SrTiO₃ under visible light irradiation, J Phys Chem B 108 (2004). https://doi.org/10.1021/jp049556p.
- [7] T. Ishii, H. Kato, A. Kudo, H₂ evolution from an aqueous methanol solution on SrTiO₃ photocatalysts codoped with chromium and tantalum ions under visible light irradiation,

J. Photochem. Photobiol. Chem. 163 (2004) 181–186. https://doi.org/10.1016/S1010-6030(03)00442-8.

- [8] R. Niishiro, H. Kato, A. Kudo, Nickel and either tantalum or niobium-codoped TiO₂ and SrTiO₃ photocatalysts with visible-light response for H₂ or O₂ evolution from aqueous solutions, Phys Chem Chem Phys 7 (2005) 2241–2245. https://doi.org/10.1039/B502147B.
- [9] W. Chen, H. Liu, X. Li, S. Liu, L. Gao, L. Mao, Z. Fan, W. Shangguan, W. Fang, Y. Liu, Polymerizable complex synthesis of SrTiO₃:(Cr/Ta) photocatalysts to improve photocatalytic water splitting activity under visible light, Appl. Catal. B Environ. 192 (2016) 145–151.
- [10] D.W. Hwang, H.G. Kim, J.S. Lee, J. Kim, W. Li, S.H. Oh, Photocatalytic Hydrogen Production from Water over M-Doped La₂Ti₂O₇ (M = Cr, Fe) under Visible Light Irradiation (λ > 420 nm), J. Phys. Chem. B 109 (2005) 2093–2102. https://doi.org/10.1021/jp0493226.
- [11] D. Xu, S. Yang, Y. Jin, M. Chen, W. Fan, B. Luo, W. Shi, Ag-decorated ATaO₃ (A= K, Na) nanocube plasmonic photocatalysts with enhanced photocatalytic water-splitting properties, Langmuir 31 (2015) 9694–9699.
- M. Yang, X. Huang, S. Yan, Z. Li, T. Yu, Z. Zou, Improved hydrogen evolution activities under visible light irradiation over NaTaO₃ codoped with lanthanum and chromium, Mater. Chem. Phys. 121 (2010) 506–510. https://doi.org/10.1016/j.matchemphys.2010.02.015.
- [13] S.P. Adhikari, Z.D. Hood, H. Wang, R. Peng, A. Krall, H. Li, V.W. Chen, K.L. More, Z.
 Wu, S. Geyer, Enhanced visible light photocatalytic water reduction from a g-C₃N₄/SrTa₂O₆ heterojunction, Appl. Catal. B Environ. 217 (2017) 448–458.

- [14] W.C. Balcerski, S.Y. Ryu, M.R. Hoffmann, Photocatalytic hydrogen production with visible light using nanocomposites of CdS and Ni on niobium oxide, Sep. Purif. Technol. 156 (2015) 915–921.
- [15] C. Zhou, Y. Zhao, L. Shang, R. Shi, L.-Z. Wu, C.-H. Tung, T. Zhang, Facile synthesis of ultrathin SnNb₂O₆ nanosheets towards improved visible-light photocatalytic H₂production activity, Chem Commun 52 (2016) 8239–8242. https://doi.org/10.1039/C6CC03739A.
- [16] K. Xu, H. Xu, G. Feng, J. Feng, Photocatalytic hydrogen evolution performance of NiS cocatalyst modified LaFeO₃/g-C₃N₄ heterojunctions, New J. Chem. 41 (2017) 14602–14609. https://doi.org/10.1039/C7NJ03120C.
- [17] M. Lv, Y. Xie, Y. Wang, X. Sun, F. Wu, H. Chen, S. Wang, C. Shen, Z. Chen, S. Ni, Bismuth and chromium co-doped strontium titanates and their photocatalytic properties under visible light irradiation, Phys. Chem. Chem. Phys. 17 (2015) 26320–26329.
- [18] X. Sun, Y. Xie, F. Wu, H. Chen, M. Lv, S. Ni, G. Liu, X. Xu, Photocatalytic Hydrogen Production over Chromium Doped Layered Perovskite Sr₂TiO₄, Inorg. Chem. 54 (2015) 7445–7453. https://doi.org/10.1021/acs.inorgchem.5b01042.