Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information

for

Synthesis, structure and (spectro)electrochemistry of hybrid metal(IV)phthalocyaninato-capped *3d*-metal pyrazoloximates as prospective precursors of ET and/or optically operated stimuli-induced and stimuliresponsive single-molecule magnets, logic gates and qubits

Svetlana A. Belova,^a Semyon V. Dudkin,^a Alexander S. Belov,^a Anastasia A.

Danshina,^{a,c} Pavel V. Dorovatovskii,^d Yulia H. Budnikova,^e Vera V.

Khrizanforova, e Svetlana Yu. Bratskaya, f Denis V. Balatskiy, f Yan Z. Voloshin^{a,b}

^aNesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova str., bld. 1, 119334 Moscow, Russia

^bKurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia

^cMoscow Center for Advanced Studies, 20 Kulakova Str., 123592, Moscow, Russia

^dNRC Kurchatov Institute, 1 Kurchatova pl., 123098 Moscow, Russia

^eArbuzov Institute of Organic and Physical Chemistry of the Russian Academy of Sciences, 8 Arbuzov st., 420088 Kazan, Russia

^fInstitute of Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 100-letiya Vladivostoka pr., 690022 Vladivostok, Russia

*Corresponding author E-mail: voloshin@ineos.ac.ru, voloshin@igic.ras.ru

Fig. S1. MALDI-TOF mass spectrum of the hybrid complex $[Fe(PzOx)_3(ZrPc)Cl]$ in the negative range. Inset: the experimental and the theoretically calculated isotopic distribution of the peak of its formed anionic cluster.

Fig. S2. MALDI-TOF mass spectrum of the hybrid complex $[Fe(PzOx)_3(HfPc)Cl]$ in the negative range. Inset: the experimental and the theoretically calculated isotopic distribution of the peak of its formed anionic cluster.

-m/z

Fig. S3. MALDI-TOF mass spectrum of the hybrid complex $[Co(PzOx)_3(ZrPc)C1]C1$ in the negative range. Inset: the experimental and the theoretically calculated isotopic distribution of the peak of its formed anionic cluster.

Fig. S4. MALDI-TOF mass spectrum of the hybrid complex $[Co(PzOx)_3(HfPc)CI]CI$ in the negative range. Inset: the experimental and the theoretically calculated isotopic distribution of the peak of its formed anionic cluster.

Fig. S5. Solution UV-vis spectrum of the complex $[Fe(PzOx)_3(HfPc)Cl]$ in DMSO.

Fig. S6. Solution UV-vis spectrum of the complex [Co(PzOx)₃(HfPc)Cl]Cl in DMSO.

Fig. S7. Solution UV-vis spectrum of the complex $[Fe(PzOx)_3B(C_6H_5)Cl]$ in DMSO.

Fig. S8. Solution UV-vis spectrum of the complex $[Co(PzOx)_3B(C_6H_5)Cl]$ in DMSO.

Compound	δ	∆Eq	Г	Relative area	Assignment
	mm/s			%	
$[Fe(PzOx)_3(BC_6H_5)Cl] [37d]$	0.99	3.55	0.28	76.7	HS Fe(II)
Fe ³⁺ -containing admixture [37d]	0.41	0.72	0.57	23.3	HS Fe(III)
[Fe(PzOx) ₃ (HfPc)Cl]	0,99	3.11	0.29	100	HS Fe(II)
[Fe(PzOx) ₃ (ZrPc)Cl]	1.00	3.11	0.24	100	HS Fe(II)

 Table S4. Main ⁵⁷Fe Mössbauer parameters for the obtained binuclear hybrid

 iron(II) complexes and those for their mononuclear phenylboron-capped analog