Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supplementary Information

Electrospun Nanofibers of 2D Cr₂CT_x MXene Embedded in PVA for Efficient Electrocatalytic Water Splitting

Madhushree R^a, Chaithra K P^a, Sunaja Devi K. R. ^{a, *} and Vinod T. P. ^{a, *}

Department of Chemistry, Christ University, Bengaluru, 560029, India.

*Email: sunajadevi.kr@christuniversity.in, https://orcid.org/0000-0001-7826-1620

vinod.tp@christuniversity.in, https://orcid.org/0000-0001-5815-5230

Fig. S1. Schematic illustration of the synthesis of Cr₂CT_x MXene sheets

Fig. S2. XRD of Cr₂AlC MAX Phase and Cr₂CT_x MXene

Fig. S3. (a) Raman spectra and (b) TGA profiles of Cr_2CT_x/CNF , PVA, and Cr_2CT_x

Fig. S4. SEM image of (a) Cr₂AIC MAX Phase (b) Cr₂CT_x MXene

Fig. S5. SEM images of (a-d) Cr₂CT_x/CNF1 and (e-h) Cr₂CT_x/CNF

Fig. S6. EDX spectra (inset SEM image) of (a) $Cr_2CT_x/CNF1$ and (b) Cr_2CT_x/CNF

Fig. S7. Cross-sectional SEM images of Cr_2CT_x/CNF with various regions within the fiber matrix (regions 1 and 2) and outside the fiber matrix (region 3), Area EDX spectrum of Cr_2CT_x/CNF analyzed in (a) region 1, (b) region 2 and (c) region 3.

Fig. S8. Optical microscopic images of nanofiber mats of (a) PVA, (b) Cr_2CT_x /PVA, (c) $Cr_2CT_x/CNF1$ and (d) Cr_2CT_x/CNF

Fig. S9. Surface wettability of nanofiber samples. Magnified photographs of water droplets placed over the fibrous mats are shown in the images.

Fig. S10. Photographs showing the water Solubility of PVA, $Cr_2CT_x/CNF1$ and Cr_2CT_x/CNF with time.

Video S1. Evidence for the insolubility of Cr_2CT_x/CNF compared the PVA nanofibrous mat.

(Uploaded separately)

Fig. S11. Comparison of LSV profiles of PVA bare and various Cr₂CT_x/CNF obtained for HER

Fig. S12. Nyquist plot with fitted Randles circuit for HER performance

Fig. S13. LSV profile of Cr₂CT_x /CNF before and after stability check for HER

Fig. S14. Comparison of LSV profiles of PVA bare and various Cr₂CT_x/CNF obtained for HER

Fig. S15. Nyquist plot fitted Randles circuit for OER performance

Fig. S16. LSV profile of Cr₂CT_x /CNF before and after stability check for OER

Fig. S17. SEM image of Cr₂CT_x/CNF after bulk electrolysis (stability test)

Table S1.	Elemental	composition	is derived fi	rom the ED	K analysis	of prepare	$d Cr_2 CT_x/0$	CNF1 and
Cr ₂ CT _x /Cl	NF							

Materials	Element present	Weight %	Atom %	Atom % Error
Cr ₂ CT _x /CNF1	С	43.21	51.91	±0.74
	0	51.79	46.71	±1.04
	Cr	4.99	1.39	±0.33
Cr ₂ CT _x /CNF	С	50.03	57.20	±0.71
	0	49.83	42.76	±1.05
	Cr	0.14	0.04	±0.07

Position	Parameter	С	0	Cr	Al	Na	Si
	Weight %	56.62	25.98	7.32	8.71	1.36	-
Region 1							
(within fiber matrix)	Atom %	68.71	23.67	2.05	4.71	0.86	-
	Atom % Error	±0.49	±2.51	±0.22	±0.12	±0.11	-
	Weight %	57.34	26.97	3.73	9.48	2.20	0.28
Region 2							
(within fiber	Atom %	68.31	24.12	1.03	5.03	1.37	0.14
matrix)							
	Atom % Error	±0.41	±1.73	±0.11	±0.07	±0.08	±0.03
	Weight %	53.20	33.41	-	11.50	1.89	-
Region 3							
(outside fiber matrix)	Atom %	63.04	29.72	-	6.06	1.17	-
	Atom % Error	±0.41	±0.47	-	±0.10	±0.08	-

Table S2. The weight and atomic percentage of elements present in the Cr_2CT_x/CNF were analyzed in various regions as shown in Fig. S7

Table S3. Comparison of HER, OER and OWS activity with reported literature.

Electrocatalyst	Polymer and Synthesis approach	Reference electrode	Water splitting activity @10 mV cm ⁻²	Ref.
Sn/Mo ₂ C/CNF	PAN/DMF solution Electrospinning	Hg/HgO	144 mV -HER	1
Co ₃ W ₃ C/CoP/N	PAN/DMF	-	139 mV -HER	2
, P-Carbon fibers	Electrospinning		200 mV - OER	
S,N-CNF/Co-	PAN/DMF	Hg/HgO	169 mV - HER	3
NiO	Electrospinning		247 mV - OER	
NiCo/CNF/N-	Polydopamine	Hg/HgO	220 mV - HER	4
dopped carbon shell	Electrospinning		0.40 V - OER	
Cr ₂ CT _x /CNF	PVA Electrospinning	SCE	265 mV - HER 250 mV - OER	Present work

References

1 L. Zhang, K. Wei, J. Ma, J. Wang, Z. Liu, R. Xing and T. Jiao, *Appl. Surf. Sci.*, 2021, **566**, 150754.

2 Y. Zhang, W. Shi, L. Bo, Y. Shen, X. Ji, L. Xia, X. Guan, Y. Wang and J. Tong, *Chem. Eng. J.*, 2022, **431**, 134188.

3 S. Surendran, S. C. Jesudass, G. Janani, J. Y. Kim, Y. Lim, J. Park, M. Han, I. S. Cho and U. Sim, *Adv. Mater. Technol.*, , DOI:10.1002/admt.202200572.

4 T. T. Gebremariam, F. Chen, Y. Jin, Q. Wang, J. Wang and J. Wang, *Catal. Sci. Technol.*, 2019, **9**, 2532–2542.