Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information

Over-oxidized Mo₃Se₄ enriched with selenium: an anode for high performance Li-ion batteries

Rohan S. Kamat^a, Chetana U. Mulik^a, Xijue Wang^b, Chinmayee Padwal^b, Lata D. Jadhav^{a,*}, Deepak P. Dubal^{b,*}

^a Electrochemical Materials Research Laboratory, Department of Physics, Rajaram College, Kolhapur-416004 (Maharashtra), India.

^b Centre for Materials Science, School of Chemistry and Physics, Queensland University of

Technology (QUT), 2 George Street, Brisbane, QLD 4000 Australia.

Corresponding authors: * Prof. (Dr.) Lata D. Jadhav (<u>ldjadhav.phy@gmail.com</u>) and

* Prof. (Dr.) Deepak P. Dubal (<u>deepak.dubal@qut.edu.au</u>)

Materials and methods

Materials

Sodium borohydride (NaBH₄) was purchased from Thomas Baker, Ammonium Molybdate (Para) Tetrahydrate [(NH₄)₆Mo₇O₂₄.4H₂O], Selenium Oxide (SeO₂) were purchased from Alfa Aesar Pvt. Ltd. All reagents were used without further purification.

Synthesis of Mo₃Se₄

In a typical synthesis, 0.05 mol of $(NH_4)_6Mo_7O_{24}.4H_2O$, 0.7 mol of SeO₂ and 0.05 mol of NaBH₄ powders were added step by step to 30 ml stirring double distilled water (DDW). The solution was stirred for 1 hr. Further 30 ml ethanol was added to the solution and stirred for another 30 min. The mixture was transferred to a 100 ml Teflon container. Hydrothermal autoclave reactor was heated at 200 °C for 24 h in a vertical muffle furnace. After the completion of hydrothermal treatment, obtained sediment was washed with DDW using 50 ml centrifuge tubes (3500/5min) for 3 times followed by single wash with ethanol. It was further vacuum dried at 80 °C for 24 h. Finally, black coloured powdered Mo_3Se_4 was obtained.

Materials Characterizations

The crystal structure, phase analysis and chemical composition of the obtained sample were investigated using XRD (Bruker Ltd. Germany, AXS D8 Advances), micro-RAMAN (Renishaw UK, INVIA0120-02) and X-ray photoelectron spectroscopy (XPS, Kratos AXIS Supraspectrometer). The morphological studies of the material were performed using a field emission scanning electron microscope (FESEM, TESCAN MIRA) and high-resolution transmission electron microscopy (HRTEM) (JEOL 2100).

Electrochemical measurements

All the electrodes were tested out using CR2032 coin cell assembly. The working electrodes were prepared by casting the slurry made from active material (60 wt.%), Super P (30 wt.%) and PVDF (Polyvinylidene fluoride) binder (10 wt.%) dispersed with drops of NMP (N-Methyl pyrrolidone) homogeneously. All chemicals purchased were of battery grade. The resultant slurry was coated on copper foil followed by vacuum drying at 90° C for 12 h. The average mass loading of active material alone on each electrode was ~ 0.25-0.26 mg/cm². CR2032 cells were assembled using coined copper foil with active material as anode, lithium foil as a counter electrode, electrolyte and glass microfiber separator in an argon-filled glove box with concentrations of moisture and oxygen below 0.5 ppm. The non-aqueous commercial electrolyte (Sigma) contained 1 M LiPF₆ (lithium hexafluorophosphate) dissolved in ethylene carbonate (EC), dimethyl carbonate (DMC) and ethyl

methyl carbonate (EMC) in 1:1:1 volumetric ratio. Galvanostatic charge–discharge tests were carried out using a Neware battery tester from 0.01 V to 3.0 V versus Li⁺/Li. Cyclic voltammograms (CVs) were measured using a Biologic VMP-3e electrochemical workstation.

Fig. S1. Enlarged magnification of TEM images of Mo₃Se₄.

Fig. S2. XPS spectra of Mo₃Se₄ (a) Mo 3d, (b) Se 3d core level spectra

Fig. S3. Charge discharge profile of Mo₃Se₄ at 0.1C (where 1C equals to 670 mA/g).

Fig. S4. Plot of $i/v^{1/2}$ vs. $v^{1/2}$

Table S1. Comparison of electrochemical performance of various electrodes as anode materials for LIBs.

Electrode	<u>Technique</u>	Current	Reversible	Cycle	<u>Ref.</u>
		<u>density</u>	<u>Capacity</u>	<u>Number</u>	
		<u>(mA/g)</u>	(mAh/g)		
MoSe ₂ /MoO ₂	Hydrothermal	100	1042	100	1
	method				
MoSe ₂	Hydrothermal	100	581	100	1
	method				
CNTs@C@MoSe2	Solvothermal	5000	508	500	2
@Se	method	100	1010	100	
CNTs@C@MoSe ₂	Solvothermal	5000	415	500	2

	method				
1T-MoSe ₂ /	Solvothermal	300	971	100	3
SWCNTs	method				
MoSe ₂ @CC	Hydrothermal	5000	638	1200	4
	method				
MoSe ₂ @N-C	Hydrothermal	1000	1219	150	5
	method				
MoSe ₂ /C	Nano-casting	200	618	300	6
	technique				
Mo-MoSe ₂	Jet cavitation	0.1C/	550	50	7
	process	0.2C			
MoSe ₂	Commercial powder	0.1C/	305	50	7
		0.2C			
MoSe ₂ /rGO	Hydrothermal	500	917	100	8
	method	1000	750	100	
MoO ₂ @MoSe ₂	Hydrothermal	2000	520.4	400	9
	method				
Mo ₃ Se ₄	Hydrothermal	268	897.62	332	This
	method				work

References

- 1 Q. Hao, G. Cui, Y. Zhao and Z. Bakenov, *Nanomaterials*, 2019, 9, 1256.
- R. Jin, Y. Cui, Q. Wang, G. Li, Y. Cui, Q. Wang and G. Li, *J. Colloid Interface Sci.*, 2017, 508, 435–442.
- T. Xiang, S. Tao, W. Xu, Q. Fang, C. Wu, D. Liu, Y. Zhou, A. Khalil, Z. Muhammad, W. Chu,
 Z. Wang, H. Xiang, Q. Liu and L. Song, *ACS Nano*, 2017, 11, 6483–6491.
- J. Kang, Q. Su, H. Feng, P. Huang, G. Du and B. Xu, *Electrochim. Acta*, 2019, **301**, 29–38.
- 5 P. Ge, H. Hou, C. E. Banks, C. W. Foster, S. Li, Y. Zhang, J. He, C. Zhang and X. Ji, *Energy*

Storage Mater., 2018, **12**, 310–323.

- F. Qin, H. Hu, Y. Jiang, K. Zhang, Z. Fang, Y. Lai and J. Li, *J. Electroanal. Chem.*, 2018, 823, 67–72.
- 7 Y. Wu and W. Liu, J. Alloys Compd., 2020, 813, 152074.
- 8 Z. Zhang, Y. Fu, X. Yang, Y. Qu and Z. Zhang, *ChemNanoMat*, 2015, 1, 409–414.
- 9 X. Zhao, J. Sui, F. Li, H. Fang, H. Wang, J. Li, W. Cai and G. Cao, *Nanoscale*, 2016, 8, 17902–17910.