Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

ESI

Synthesis and characterization of copper(II) complexes: Their catalytic behavior towards alcohol oxidation using NaOCl as the oxidant

Suparna Roy,^a Arpita Barma,^a Debasmita Muhuri,^a Pritam Ghosh^b and Partha Roy*,^a

^a Department of Chemistry, Jadavpur University, Kolkata 700032, India Email Address: partha.roy@jadavpuruniversity.in

^b Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, Berlin 12489, Germany

Scheme S1 Synthetic route to Complex 1 and Complex 2.

Fig. S1 ESI mass spectrum of HL₁.

Fig. S2 ESI mass spectrum of HL₂.

Fig. S3 ¹H NMR spectrum of HL₁ in DMSO-d₆.

Fig. S4 ¹H NMR spectrum of HL₂ in DMSO-d₆.

Fig. S5 ORTEP view of (a) Complex 1 (40% thermal ellipsoids) and (b) Complex 2 (40% thermal ellipsoids) including the selective atom numbering scheme. Only the relevant hydrogen atoms are shown for clarity. Counter anions NO_3^- in (b) are not shown for clarity. Symmetry transformation for Complex 1: = i = 2 -x, 1 -y, 1 -z. Symmetry transformation for Complex 2: = i = 2 -x, 1 -y, 1 -z.

UV-Vis Spectroscopy

The electronic spectra of Complex 1 and Complex 2 were recorded in DMF in the range of 200-700 nm at room temperature (Fig. S5 and S6). The UV-vis spectrum of Complex 1 exhibits an intense band at 309 nm with molar extinction coefficient of 8360 M^{-1} cm⁻¹ and one medium intensity band at 376-397 nm which may be attributed to the O⁻ of naphthalen-1-olate to copper(II) and N(imino) to Cu(II) LMCT (charge transfer from a molecular orbital of greater ligand character to a molecular orbital of greater metal character) and also due to the intraligand charge transfer transitions. For Complex 2, a high intensity band at 307 nm (molar extinction coefficient of 6957 M^{-1} cm⁻¹) and a band in the range 378-395 nm appears which correspond to the ligand to metal charge transfer transitions (PhO⁻ to Cu(II)) and N(imino) to Cu(II)) and intraligand charge transfer transitions too. Both the copper(II) complexes, centrosymmetric, show weak bands around 552-598 nm which clearly indicates the Laporte forbidden *d-d* transitions. These characteristic bands support the square planar geometry around the Cu(II) centres in both complexes.

Fig. S6 UV-vis spectrum of Complex 1 in DMF at room temperature. Spectrum in the range of 500-650 nm is shown in the inset.

Fig. S7 UV-vis spectrum of Complex 2 in DMF at room temperature. Spectrum in the range of 500-700 nm is shown in the inset.

IR Spectroscopy

The FT-IR spectra of complexes 1 and 2 were obtained with solid samples by ATR technique (Fig. S8 and S9). HL_1 and HL_2 exhibit bands at 1615 and 1643 cm⁻¹ respectively indicating the formation of the Schiff bases. The intense bands at 1606 and 1616 cm⁻¹ for complexes 1 and 2 respectively indicate the presence of azomethine (C=N) moiety, characteristic of Schiff base, in the complexes. The symmetrical and unsymmetrical bands at 2800-3000 cm⁻¹ provide the evidence of presence of the methylene group.

Fig. S9 FT-IR spectra of (a) HL₂ and (b) Complex 2.

Mass Spectrometry

The ESI-mass spectrometric analysis of the two complexes was carried out in their methanolic solutions (Fig S10 and S11). For Complex 1, the m/z peak at 597.25 may be attributed to the $[Cu(L_1)_2 + H^+]$ species (calculated value = 596.24). Similarly, the m/z peak at 814.93 for Complex 2 indicates the presence of $[Cu(L_2)_2 + H^+]$ species (calculated values = 813.94).

Fig. S10 ESI mass spectrum of Complex 1.

Fig. S11 ESI mass spectrum of Complex 2.

EPR studies

The synthesized copper complexes were subjected to X-band EPR spectroscopy at 77 K (Fig. S12). The g_1 and A_1 values of the synthesized copper complexes are provided in Table S2. The values are consistent with tetragonal copper complexes with a $d_{x^2-y^2}$ ground state present in a square-planar or square-pyramidal geometry bound to a weak field ligand.

Fig. S12 EPR spectra of Complex 1 and 2.

Fig. S13 Scan rate dependence of 10^{-4} M solution of (a) Complex 1 and (b) Complex 2 at scan rates from 50 to 200 mV/s in DMF with 0.1 M [n-Bu₄N](ClO₄) as supporting electrolyte.

Fig. S14 Cyclic voltammograms of (a) HL_1 and (b) HL_2 in air free DMF solution using a glassy carbon as working electrode, a saturated Ag/AgCl as reference electrode and a platinum wire as the auxiliary electrode with 0.1 M of [n-Bu₄N]Br as supporting electrolyte at a scan rate of 50 mV/s.

Fig. S15 ¹H NMR spectrum of the product (2-hydroxybenzaldehyde) isolated from the reaction of 2-hydroxybenzyl alcohol catalyzed by Complex 1. Spectrum was recorded in DMSO-d₆.

Fig. S16 Absorbance of (a) Complex 1 and (b) Complex 2 with sodium hypochlorite at different time intervals. Absorance decreases with the passage of time.

Complex 1		Complex 2	
Cu1–O1	1.8936(19)	Cu1–O2	1.893(2)
Cu1–N1	1.993(2)	Cu1–N2	2.037(2)
Cu1–O1_a	1.8936(19)	Cu1–O2_a	1.893(2)
Cu1–N1_a	1.993(2)	Cu1–N2_a	2.037(2)
01–Cu1–N1	90.58(9)	O2–Cu1–N2	91.80(9)
01–Cu1–O1_a	180.00	O2–Cu1–O2_a	180.00
O1–Cu1–N1_a	89.42(9)	O2–Cu1–N2_a	88.20(9)
O1_a–Cu1–N1	89.42(9)	O2_a–Cu1–N2	88.20(9)
N1–Cu1–N1_a	180.00	N2–Cu1–N2_a	180.00
O1_a -Cu1-N1_a	90.58(9)	O2_a–Cu1–N2_a	91.80(9)
Translation of Symmetry Code to Equiv. Pos		Translation of Symmetry Code to Equiv. Pos	
a =[2766.00] = [2_7	[66] = 2 - x, 1 - y, 1 - z	$a = [2766.00] = [2_7]$	[66] = 2-x, 1-y, 1-z

Table S1 Selected bond distances (Å) and bond angles (°) of Complex 1 and 2

Table S2 The g₁ and A₁ values of Complex 1 and Complex 2

Complex	gi	A
Complex 1	2.22	181
Complex 2	2.23	181

Table S3 Oxidation of benzyl alcohol in various solvents

Entry	Catalyst	Yield(%) in MeOH	Yield(%)	Yield(%) in
			in DCM	DMF
1	1	49	65	57

Entry	Catalyst	Yield(%)inpresenceofTBHP	Yield(%) in presence of H_2O_2	Yield(%) in presence of NaOCl
1	1	65	78	82

Table S4 The oxidation of benzyl alcohol in the presence of different oxidants

Table S5 The oxidation of benzyl alcohol in the presence of NaOCl at different temperature

Entry	Catalyst	Yield (%)		
	-	313 K	333 K	353 K
1	Complex 1	82	73	65

Table S6 Oxidation of alcohols using Complexes 1 and 2 as the catalyst in the presence of NaOCl oxidant. Yields the products were calculated after their isolation. Corresponding aldehyde was obtained as the sole product with both the catalysts.

Substrates	Yield % (TON)		Product isolated
	Complex 1	Complex 2	
2-Hydroxybenzyl alcohol	72 (14.4)	51 (10.2)	2-Hydroxybenzaldehyde
3-Hydroxybenzyl alcohol	78 (15.6)	55 (11)	3-Hydroxybenzaldehyde
2-Nitrobenzyl alcohol	68 (13.6)	39 (7.8)	2-nitrobenzaldehyde
3-Nitrobenzyl alcohol	66 (13.2)	37 (7.4)	3-nitrobenzaldehyde
1-Butalnol	Not detected	Not detected	

Table S7 Optimized coordinates for Complex 1.

total energy = -3294.35461865152 Hartree 81

Cu	4.2722949	3.3629918	5.4514270
0	3.9693541	3.8275074	7.2987669
N	2.8348489	4.6457850	4.9178566
С	1.9101206	5.0659161	5.7262249
С	2.8682807	4.2266191	7.8471459
С	1.7784639	4.7945622	7.1297902
С	4.1522711	6.3977889	1.7804978
Н	4.1440471	5.4828580	1.1619457
Н	3.2436427	6.9716359	1.5126128
С	0.5084861	5.0394726	9.2556737
С	1.6382470	4.4977439	9.9460265
Η	1.5815889	4.3918563	11.0332981
С	0.5708996	5.1873015	7.8326627
С	-1.7591713	5.9348715	9.3031606
Η	-2.6556668	6.2249348	9.8565746
С	5.3958140	7.2386644	1.4641184
Η	6.2987648	6.6198086	1.6266854
Η	5.3978487	7.5268586	0.3980131
С	2.7651648	4.1089367	9.2787856
Η	3.6254898	3.6912488	9.8056800
С	-0.6587763	5.4195187	9.9640030
Η	-0.6730221	5.2946383	11.0504423
С	-0.5835327	5.7057922	7.1844540
Η	-0.6062888	5.8104163	6.0994563

С	5.4710706	8.4865152	2.3544001
Η	4.6256701	9.1579392	2.1092815
Η	6.3957417	9.0524451	2.1432326
С	-1.7129616	6.0731086	7.8988691
Η	-2.5804481	6.4680167	7.3630338
С	5.4023129	8.1141879	3.8416072
Η	5.4090703	9.0249784	4.4661199
Η	6.3072967	7.5379743	4.1135401
С	4.1599108	7.2695767	4.1554422
Η	3.2494013	7.8794790	3.9926501
Η	4.1608711	6.9798820	5.2204383
С	2.8445442	5.1621657	3.5518269
Η	1.9331749	5.7634220	3.3749146
Η	2.8395897	4.3074981	2.8614450
С	4.0874778	6.0177822	3.2679831
Η	4.9720052	5.3931363	3.4867648
Η	1.1553751	5.7326829	5.2889906
0	4.5613351	2.8827716	3.6055482
Ν	5.7257098	2.0965336	5.9822344
С	6.6503158	1.6850767	5.1692634
С	5.6638924	2.4968471	3.0507729
С	6.7680401	1.9510758	3.7633978
С	4.4562490	0.3330770	9.1328128
Η	4.4507270	1.2506329	9.7475729
Η	5.3766927	-0.2226550	9.3985871
С	8.0256830	1.7121520	1.6296272
С	6.8820358	2.2306663	0.9443260
Η	6.9286392	2.3298254	-0.1440539

С	7.9763966	1.5731278	3.0540292
С	10.3071533	0.8532259	1.5710895
Η	11.2039113	0.5734494	1.0128213
С	3.2301482	-0.5293708	9.4590618
Н	2.3149870	0.0717474	9.2981521
Η	3.2386240	-0.8127464	10.5264291
С	5.7540742	2.6059639	1.6175754
Η	4.8832412	3.0061389	1.0943903
С	9.1937406	1.3463910	0.9151105
Η	9.1980851	1.4644990	-0.1721717
С	9.1439679	1.0782046	3.6970818
Η	9.1765738	0.9820906	4.7826268
С	3.1739564	-1.7823700	8.5746278
Η	4.0329662	-2.4367397	8.8185419
Η	2.2610757	-2.3645526	8.7928061
С	10.2738022	0.7241727	2.9766344
Η	11.1516074	0.3471426	3.5085280
С	3.2285240	-1.4154277	7.0854921
Η	3.2358632	-2.3289923	6.4650463
Η	2.3115317	-0.8575766	6.8154997
С	4.4532688	-0.5489964	6.7618121
Η	5.3758383	-1.1410354	6.9226838
Η	4.4415963	-0.2641597	5.6955790
С	5.7320734	1.5851259	7.3501081
Η	6.6552121	1.0013650	7.5246261
Η	5.7245795	2.4421459	8.0374351
С	4.5065340	0.7078755	7.6434362
Η	3.6098648	1.3154528	7.4263619

Н 7.4170472 1.0304312 5.6040287

 Table S8 Optimized coordinates for Complex 1 OCI.
 total energy = -3829.54615319704 Hartree 83

Cu	5.2022446	4.0016672	5.4034199
0	5.0413663	4.6479082	7.2599090
N	3.2384198	4.5749600	5.1243259
С	2.3880974	4.7374814	6.0787262
С	3.9839053	4.6010720	7.9878119
С	2.6438451	4.5608178	7.4902365
С	3.5478957	6.2463577	1.7051391
С	1.7729606	4.3560635	9.8135290
С	3.1160039	4.4870930	10.2870427
С	1.5353191	4.3976175	8.4006827
С	-0.6012327	4.0121672	10.2595159
С	4.5658158	7.2323326	1.1149172
С	4.1661642	4.6070620	9.4224168
С	0.6965255	4.1680945	10.7143651
С	0.1903058	4.2186724	7.9676235
С	4.6245735	8.5351047	1.9253787
С	-0.8459782	4.0359063	8.8685994
С	4.8846972	8.2597597	3.4131374
С	3.8589208	7.2770252	3.9917695
С	2.8723795	4.9267806	3.7636131
С	3.8386058	5.9710713	3.1867023
0	5.2374198	3.1922467	3.5957583

Ν	5.9263697	2.0861814	6.0191388
С	6.7947104	1.4759681	5.2929820
С	6.3405746	2.6813299	3.1704652
С	7.2106191	1.8759845	3.9642836
С	3.4281315	0.7685063	8.5824963
С	8.7616057	1.6242192	2.0361405
С	7.8441830	2.3853893	1.2470546
С	8.4410068	1.3730581	3.4121331
С	10.8658669	0.4050447	2.2496256
С	1.9002149	0.6215723	8.5809060
С	6.6926735	2.8885491	1.7859785
С	9.9698658	1.1301964	1.4838068
С	9.3967315	0.6413842	4.1757480
С	1.4210216	-0.2562072	7.4165641
С	10.5689492	0.1667328	3.6113743
С	1.9463502	0.2643377	6.0712389
С	3.4748417	0.4016271	6.0748205
С	5.4689518	1.4880669	7.2541436
С	3.9461347	1.2891214	7.2342851
0	6.7285762	5.2300122	4.9159449
Cl	8.1744006	4.7799803	5.7474650
Η	3.5677380	5.2975271	1.1384446
Η	2.5262683	6.6623762	1.5963645
Η	3.2914985	4.4720865	11.3672741
Η	-1.4244976	3.8626768	10.9628658
Η	5.5651598	6.7573388	1.1205861
Н	4.3228372	7.4486801	0.0588126
Н	5.1953332	4.6866663	9.7804334

Η	0.9139129	4.1413690	11.7864577
Η	-0.0416496	4.1961596	6.9024367
Η	3.6603487	9.0698514	1.8192293
Η	5.4027570	9.2041800	1.5155526
Η	-1.8642224	3.8970382	8.4938043
Η	4.8746507	9.2065643	3.9830372
Η	5.8911664	7.8195371	3.5389860
Η	2.8494247	7.7365432	3.9778972
Η	4.1030941	7.0594346	5.0444974
Η	1.8281120	5.2987934	3.7238489
Η	2.9487095	4.0167103	3.1478135
Η	4.8457215	5.5273846	3.2468328
Η	1.3770417	5.0775479	5.8016583
Н	3.7393269	1.4557857	9.3890792
Η	3.8931346	-0.2141889	8.7985628
Η	8.0891545	2.5712400	0.1965261
Н	11.7958078	0.0303705	1.8139087
Η	1.4432566	1.6231530	8.4946344
Η	1.5577932	0.2007366	9.5435178
Η	5.9958137	3.4827889	1.1892739
Η	10.1842000	1.3385785	0.4310530
Η	9.2218509	0.4648933	5.2378379
Η	1.7815523	-1.2925597	7.5679329
Η	0.3170491	-0.3047339	7.4043640
Η	11.2777647	-0.3890876	4.2321997
Η	1.6235753	-0.4013291	5.2504030
Η	1.5006379	1.2568568	5.8681122
Η	3.9387739	-0.6015964	6.1632236

- H 3.8193175 0.8364306 5.1216175
- H 5.9766769 0.5181521 7.4396838
- H 5.7200198 2.1712492 8.0838719
- H 3.4982112 2.2811585 7.0745984
- H 7.2264300 0.5379627 5.6842886

Table S9 Optimized coordinates for Complex 1=O.total energy= -3369.49226894376 Hartree82

Cu	5.8058874	4.2844192	5.7860078
0	5.4092668	4.7136085	7.6436898
N	3.8298204	4.4268425	5.3644709
С	2.8820351	4.5835610	6.2304159
С	4.2851102	4.7176327	8.2700682
С	2.9990239	4.6318097	7.6605033
С	3.6981167	5.6719914	1.7534012
С	1.9220327	4.6493389	9.9043675
С	3.2236175	4.7872416	10.4825365
С	1.8041584	4.5779312	8.4787377
С	-0.4909403	4.4154932	10.1771126
С	4.1136268	6.9681409	1.0448495
С	4.3477764	4.8256036	9.7098678
С	0.7703518	4.5693568	10.7248058
С	0.4923300	4.4155472	7.9512684
С	3.3625339	8.1829975	1.6064380
С	-0.6200365	4.3377158	8.7737140
С	3.5350195	8.2875883	3.1277382
С	3.1168499	6.9898226	3.8324848

С	3.4633306	4.4583472	3.9548805
С	3.8732517	5.7744806	3.2760348
0	6.1872735	3.9280411	3.9563906
Ν	5.9768625	1.9287969	5.9292162
С	6.8493991	1.3532081	5.1835261
С	7.1782463	3.2103769	3.5304308
С	7.5452983	1.9357875	4.0475325
С	3.3522248	0.5756676	8.3610110
С	9.2877927	1.7377296	2.2701469
С	8.8889576	3.0167408	1.7797714
С	8.6185616	1.1942887	3.4200317
С	10.7390381	-0.2186044	2.1051296
С	1.8303312	0.7451649	8.4714007
С	7.8898873	3.7230321	2.3892635
С	10.3331445	1.0167365	1.6375147
С	9.0776114	-0.0776110	3.8786348
С	1.1190922	0.2916371	7.1886879
С	10.0980943	-0.7620841	3.2420512
С	1.6880963	0.9984001	5.9502602
С	3.2092790	0.8256128	5.8480440
С	5.4356808	1.1838106	7.0452848
С	3.9109536	1.2986556	7.1273665
0	7.4920153	4.5996733	6.0576403
Η	4.2930989	4.8233192	1.3720699
Η	2.6374202	5.4511781	1.5203244
Η	3.3046942	4.8519280	11.5719021
Η	-1.3737265	4.3506966	10.8182397
Η	5.2012477	7.1195961	1.1828004
Η	3.9421601	6.8800747	-0.0429746
Η	5.3425972	4.9187626	10.1510307
Η	0.8996884	4.6274516	11.8096250

Η	0.3366659	4.3330654	6.8760876
Η	2.2852569	8.0846434	1.3696693
Η	3.7108219	9.1095405	1.1157162
Η	-1.6089054	4.2087682	8.3246767
Н	2.9533211	9.1397695	3.5224066
Η	4.5971230	8.4954513	3.3586761
Η	2.0278483	6.8336935	3.6968731
Η	3.2916387	7.0812312	4.9183369
Η	2.3712513	4.3116622	3.8463709
Η	3.9823373	3.6288180	3.4571148
Η	4.9487445	5.9123659	3.4738803
Η	1.8675761	4.6861667	5.8243364
Η	3.8421623	0.9619630	9.2733754
Η	3.5999324	-0.5028797	8.2986902
Η	9.4064008	3.4284456	0.9079094
Η	11.5457744	-0.7659172	1.6106612
Η	1.5982337	1.8087351	8.6574649
Η	1.4459730	0.1798327	9.3395592
Η	7.5824760	4.7062284	2.0254777
Η	10.8169469	1.4650074	0.7645270
Η	8.6306398	-0.5377003	4.7589532
Η	1.2454762	-0.8022358	7.0694454
Η	0.0328513	0.4775250	7.2697652
Η	10.4138789	-1.7344626	3.6309105
Η	1.1968710	0.6213375	5.0351147
Η	1.4529992	2.0771749	6.0122816
Η	3.4498335	-0.2420965	5.6697612
Η	3.6031192	1.3911898	4.9869936
Η	5.7389911	0.1138262	7.0061641
Η	5.8595433	1.6108906	7.9739779
Η	3.6833217	2.3656741	7.2461378

H 7.1108638 0.3081883 5.4216251

```
Table S10 Optimized coordinates for Complex 2.total energy= -8317.4816839606671
```

Br	-1.1083600	6.3485731	6.2717494
Cu	5.8218519	3.6463823	5.6978379
0	4.7050189	4.7746529	6.7637321
0	6.2366828	8.2046222	1.5246375
Ν	5.6215923	5.4233306	1.8967634
Ν	4.5009771	3.7309499	4.1616016
С	3.2818070	4.1626380	4.2909211
С	2.7012233	4.8046036	5.4332861
С	5.9420649	6.3484537	3.0508414
Η	7.0227898	6.2569266	3.2253740
Η	5.3998264	6.0001250	3.9375794
С	1.4563070	6.1504503	7.5609888
Η	0.9702589	6.6749754	8.3856774
С	2.7885365	5.7897673	7.6631899
Η	3.3589834	6.0298290	8.5626705
С	5.9013472	7.4011272	0.4132246
Η	6.4568373	7.7816367	-0.4558629
Η	4.8175196	7.4773286	0.1914911
С	5.5686567	7.7806408	2.6916520
Η	4.4700599	7.8709829	2.5687775
Η	5.8763664	8.4412465	3.5149440
С	5.9884936	3.9813926	2.1682293
Η	6.9113226	3.9868883	2.7598121
Η	6.1942681	3.5146434	1.1956502
С	0.7264447	5.8428220	6.3937969

С	1.3370925	5.1850070	5.3456145
Η	0.7795636	4.9513725	4.4368619
С	4.8805972	3.1927332	2.8575567
Η	3.9968056	3.1426849	2.1978044
Η	5.2697315	2.1736251	2.9844922
С	3.4555581	5.1003858	6.6126687
С	6.2859829	5.9449451	0.6418543
Η	5.9646309	5.3091070	-0.1938130
Η	7.3683938	5.8336927	0.7956029
Η	2.6077544	4.0527454	3.4272850
Η	4.6060731	5.4652439	1.7342830
Br	12.7543173	0.9507235	5.1235250
0	6.9398977	2.5205298	4.6308050
0	5.3930726	-0.9124284	9.8698496
N	6.0144045	1.8679604	9.5004330
Ν	7.1416182	3.5601471	7.2348691
С	8.3611702	3.1295401	7.1055641
С	8.9428257	2.4897056	5.9625637
С	5.7008955	0.9425731	8.3446417
Η	4.6215934	1.0355828	8.1622587
Η	6.2499573	1.2895568	7.4616180
С	10.1898782	1.1477391	3.8336442
Η	10.6766747	0.6244577	3.0086065
С	8.8574362	1.5075466	3.7312567
Η	8.2876029	1.2681722	2.8312023
С	5.7217553	-0.1087118	10.9830863
Η	5.1597532	-0.4879078	11.8485502
Η	6.8039251	-0.1861523	11.2123401
С	6.0696918	-0.4899578	8.7072464
Η	7.1672616	-0.5817884	8.8377951
Η	5.7667777	-1.1506374	7.8822309

С	5.6506176	3.3100674	9.2262050
Η	4.7292565	3.3052864	8.6323131
Η	5.4429980	3.7780502	10.1978098
С	10.9189819	1.4545848	5.0015229
С	10.3072404	2.1103326	6.0503542
Η	10.8641288	2.3431786	6.9597008
С	6.7611479	4.0969790	8.5392353
Η	7.6440926	4.1445448	9.2003254
Η	6.3741732	5.1170376	8.4132049
С	8.1893983	2.1952489	4.7822590
С	5.3405211	1.3477813	10.7509114
Η	5.6566034	1.9837666	11.5884690
Η	4.2593502	1.4601740	10.5893895
Η	9.0346968	3.2387188	7.9696856
Н	7.0287241	1.8251557	9.6699875

 Table S11 Optimized coordinates for Complex 2OCl.

total energy = -8852.71466155198 Hartree 73

Br	-0.5374469	4.8650649	7.1547397
Cu	6.8632529	4.5376489	5.6501301
0	5.4678797	5.4169903	6.7042267
0	5.0959129	7.8644566	1.0551446
N	5.4962184	5.1466113	1.8968640
N	5.2857715	3.6505655	4.4614543
С	4.0255678	3.7356078	4.7348012
С	3.4291278	4.4542674	5.8319813
С	5.7277232	6.3252686	2.8195942
С	2.0724704	5.8626575	7.8585829

С	3.4438691	5.9880803	7.7316790
С	4.8253312	6.8008086	0.1687668
С	4.8539859	7.4950780	2.3975454
С	6.3499367	3.9467433	2.2470742
С	1.3571888	5.0321614	6.9722948
С	2.0225602	4.3496902	5.9733478
С	5.6595975	2.9930359	3.2204307
С	4.1862873	5.2865146	6.7296605
С	5.6959017	5.5862513	0.4674662
Br	12.2108228	-0.7856065	5.8013724
0	8.1487745	3.5253974	4.5871795
0	4.2065339	-0.1202430	8.5539015
N	5.7768561	2.2328304	9.0235228
N	7.7316852	3.6692029	7.4414835
С	8.7408209	2.8620022	7.4123822
С	9.3237198	2.2341956	6.2532102
С	5.1906780	1.9051247	7.6692762
С	10.5951039	0.9068165	4.1184287
С	9.6642095	1.8961434	3.8595504
С	4.7561441	0.1201818	9.8326149
С	5.0247889	0.3999054	7.5284650
С	5.9768531	3.7175555	9.2239899
С	10.9137097	0.5746359	5.4504120
С	10.2967221	1.2331864	6.4959086
С	7.3510679	4.1908485	8.7444280
С	8.9886727	2.6012992	4.9044571
С	4.9229485	1.6112552	10.1006658
0	7.6364794	6.2891064	5.0935402

Cl	8.7730748	6.7540859	6.3041503
Η	6.7946742	6.5709179	2.7536099
Η	5.5195618	6.0089458	3.8463186
Η	1.5450948	6.4093163	8.6427824
Η	4.0044596	6.6354119	8.4096309
Η	5.0416187	7.1502583	-0.8511814
Η	3.7535347	6.5177593	0.2168463
Η	3.7814848	7.2503841	2.5432027
Η	5.0967166	8.3598266	3.0316407
Η	7.2882607	4.3202465	2.6732343
Η	6.5606624	3.4138089	1.3101465
Η	1.4698995	3.7167000	5.2760633
Η	4.7775889	2.5337174	2.7348588
Η	6.3894524	2.1961539	3.4266481
Η	5.4399091	4.7397572	-0.1840391
Η	6.7636983	5.8234051	0.3623338
Η	3.3061260	3.2338045	4.0635240
Η	4.5091976	4.8700532	1.9888447
Η	4.2185209	2.4142970	7.6230990
Η	5.8537462	2.3249744	6.9045632
Η	11.0865808	0.3894409	3.2920972
Η	9.4233740	2.1698410	2.8298668
Η	4.0659340	-0.3003013	10.5778672
Η	5.7335302	-0.3933437	9.9371098
Η	6.0162570	-0.0983277	7.5277170
Η	4.5348425	0.1832968	6.5680393
Η	5.1593304	4.2184223	8.6993949
Η	5.8830978	3.9173388	10.2995173

- H 10.5498608 0.9847852 7.5286444
- H 8.1072980 3.9166416 9.5029618
- H 7.3077212 5.2896748 8.6938707
- H 5.4144612 1.7929910 11.0657380
- H 3.9573667 2.1360608 10.0754834
- H 9.2292438 2.5994717 8.3680940
- H 6.7017174 1.7837933 9.0739964

Table S12 Optimized coordinates for Complex 2=O.

total energy = -8392.72547738049 Hartree

72

-0.2671725	7.3384833	6.4381363
6.6875848	4.9738824	6.0801741
5.4109122	5.5417193	7.3233453
5.2236695	6.7790858	0.8292362
5.7324653	4.5957234	2.5889121
4.9074312	3.6031000	5.1530910
3.7327755	4.1036042	5.2877764
3.3328802	5.2197021	6.1371276
6.7946950	5.1675788	1.7539998
2.4067983	7.5405861	7.4637194
3.7258875	7.1341907	7.6099732
4.1936254	6.2458370	1.6403308
6.4905202	6.6305126	1.4476064
6.0281461	3.2200046	2.9794405
1.5439943	6.7893973	6.6520800
2.0028955	5.6572626	5.9893381
	-0.2671725 6.6875848 5.4109122 5.2236695 5.7324653 4.9074312 3.7327755 3.3328802 6.7946950 2.4067983 3.7258875 4.1936254 6.4905202 6.0281461 1.5439943 2.0028955	-0.26717257.33848336.68758484.97388245.41091225.54171935.22366956.77908585.73246534.59572344.90743123.60310003.73277554.10360423.33288025.21970216.79469505.16757882.40679837.54058613.72588757.13419074.19362546.24583706.49052026.63051266.02814613.22000461.54399436.78939732.00289555.6572626

С	5.0866556	2.6587964	4.0606179
С	4.2114939	5.9516064	6.9993323
С	4.4317164	4.7687698	1.9390906
Br	12.7559060	0.7936280	5.1347771
0	8.1498859	4.6974855	4.9104727
0	4.6554377	-1.1020861	7.7184341
N	5.5481027	1.4781988	8.6049707
N	7.4280470	3.7693211	7.4665566
С	8.5410357	3.1156825	7.3313357
С	9.3631209	3.0329581	6.1652120
С	5.6517357	1.0314684	7.1657740
С	11.0441044	2.7721440	3.9358737
С	9.9818621	3.6566443	3.8915503
С	4.5663928	-0.7558433	9.0844062
С	5.7601303	-0.4852865	7.0964019
С	5.4198553	2.9769682	8.7575613
С	11.2851910	2.0068436	5.0966369
С	10.4644335	2.1387582	6.1968371
С	6.7571936	3.7080745	8.7630666
С	9.1071472	3.8253322	5.0031207
С	4.4042196	0.7474707	9.2712221
0	6.0550206	6.2235925	4.9232871
Η	6.8979891	4.6019806	0.8024066
Η	7.7459280	5.1021335	2.3031855
Η	2.0499027	8.4403518	7.9673876
Η	4.4164017	7.7030589	8.2352907
Η	3.2485867	6.3768326	1.0914471
Η	4.1308695	6.8067171	2.5955155

Н	6.5245668	7.2156815	2.3885210
Н	7.2393110	7.0378542	0.7514114
Η	7.0578613	3.2076099	3.3588796
Η	5.9903434	2.5306519	2.1078264
Η	1.3319830	5.1013631	5.3319761
Η	4.1127918	2.3724452	3.6202285
Η	5.5545764	1.7331882	4.4371302
Η	3.6281344	4.4036778	2.5949293
Η	4.3831437	4.1858617	0.9931338
Η	2.9083882	3.7131138	4.6626867
Η	5.9315511	5.6850382	4.0941212
Η	4.7367956	1.3840183	6.6740057
Η	6.5139850	1.5274885	6.7070549
Η	11.6987537	2.6693650	3.0685557
Η	9.8048374	4.2604925	3.0004653
Η	3.6841028	-1.2617031	9.5018580
Η	5.4615179	-1.1113657	9.6339960
Η	6.7102840	-0.8249322	7.5574370
H H	6.7102840 5.7655504	-0.8249322 -0.7915336	7.5574370 6.0402213
H H H	6.71028405.76555044.7646199	-0.8249322 -0.7915336 3.3320365	7.55743706.04022137.9557423
Н Н Н	6.71028405.76555044.76461994.9296945	-0.8249322 -0.7915336 3.3320365 3.1496957	7.5574370 6.0402213 7.9557423 9.7248564
н н н н	 6.7102840 5.7655504 4.7646199 4.9296945 10.6477149 	-0.8249322 -0.7915336 3.3320365 3.1496957 1.5547514	7.5574370 6.0402213 7.9557423 9.7248564 7.1003815
н н н н н	 6.7102840 5.7655504 4.7646199 4.9296945 10.6477149 7.4297097 	-0.8249322 -0.7915336 3.3320365 3.1496957 1.5547514 3.2526504	7.5574370 6.0402213 7.9557423 9.7248564 7.1003815 9.5110293
H H H H H	 6.7102840 5.7655504 4.7646199 4.9296945 10.6477149 7.4297097 6.5392943 	-0.8249322 -0.7915336 3.3320365 3.1496957 1.5547514 3.2526504 4.7312856	7.5574370 6.0402213 7.9557423 9.7248564 7.1003815 9.5110293 9.0948250
H H H H H H	 6.7102840 5.7655504 4.7646199 4.9296945 10.6477149 7.4297097 6.5392943 4.4071831 	-0.8249322 -0.7915336 3.3320365 3.1496957 1.5547514 3.2526504 4.7312856 1.0223598	7.5574370 6.0402213 7.9557423 9.7248564 7.1003815 9.5110293 9.0948250 10.3345309
H H H H H H H	 6.7102840 5.7655504 4.7646199 4.9296945 10.6477149 7.4297097 6.5392943 4.4071831 3.4833475 	-0.8249322 -0.7915336 3.3320365 3.1496957 1.5547514 3.2526504 4.7312856 1.0223598 1.1159665	7.5574370 6.0402213 7.9557423 9.7248564 7.1003815 9.5110293 9.0948250 10.3345309 8.7975524
H H H H H H H H	 6.7102840 5.7655504 4.7646199 4.9296945 10.6477149 7.4297097 6.5392943 4.4071831 3.4833475 8.8975831 	-0.8249322 -0.7915336 3.3320365 3.1496957 1.5547514 3.2526504 4.7312856 1.0223598 1.1159665 2.5371556	7.5574370 6.0402213 7.9557423 9.7248564 7.1003815 9.5110293 9.0948250 10.3345309 8.7975524 8.1967546

Formula	$C_{36}H_{40}CuN_2O_2$	$C_{26}H_{34}CuBr_2N_6O_{10}$		
Formula weight	596.24	813.94		
<i>T</i> (K)	144(2)	293(2)		
Crystal color	brown	brown		
Crystal system	triclinic	triclinic		
Space group	P -1	P -1		
<i>a</i> (Å)	5.6160(16)	8.1767(6)		
<i>b</i> (Å)	11.962(3)	8.1955(6)		
<i>c</i> (Å)	12.004(4)	12.1083(8)		
α (°)	113.799(9)	92.454(2)		
β (°)	91.846(10)	109.282(2)		
γ (°)	100.923(9)	95.012(2)		
$V(\text{\AA}^3)$	719.2(4)	760.74(9)		
Ζ	1	1		
Crystal dimensions (mm)	0.4×0.2×0.1	0.5×0.3×0.1		
<i>F</i> (0 0 0)	315.0	411.0		
$D_{\rm c} ({\rm g}~{\rm cm}^{-3})$	1.377	1.772		
λ (Mo Kα) (Å)	0.71073	0.71073		
θ Range (°)	3.18-26.65	2.502-27.565		
Reflection collected/	7758, 3266, 2550	25925, 3505, 3176		
unique/observed				
Absorption correction	multi-scan	multi-scan		
R _{int}	0.0485	0.1122		
Final R_1 index $[I > 2\sigma(I)]$	0.0763	0.0366		
Final wR_2 index (all reflections)	0.1034	0.1074		
Goodness-of-fit	1.068	1.017		

Table S13	Crystal	data of	Complex 1	l and	Complex 2
-----------	---------	---------	-----------	-------	-----------