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Fig. S1 n-LMN,LN,MN, and Ni3S2@NF highest diffraction peak angle 

shift.
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Fig. S2 The SEM images of a, b MN and c, d LN at different multiples 

were obtained.
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Fig. S3 Cyclic voltammetry curves of different materials between 0.03–

0.138 V vs. RHE.
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Fig. S4 The TOF of HER in Ni3S2@NF, LN, MN, 0.05-LMN, 0.1-LMN, 

and 0.2-LMN at different overpotentials.
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Fig. S5 The stability of 0.1-LMN catalyzed HER at a current density of 

200 mA cm−2.

Fig. S6 The (a) LSV curve of OER catalyzed by different materials; (b) 

Overpotential comparison at a current density of 100 mA cm−2.
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Fig. S7 Cyclic voltammetry curves of different materials between 0.909–

1.019 V vs. RHE.
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Fig. S8 The TOF of GOR in Ni3S2@NF, LN, MN, 0.05-LMN, 0.1-LMN, 

and 0.2-LMN at different overpotentials.
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Fig. S9 The electrocatalytic performance of Ni3S2@NF and 0.1-LMN 

before and after poisoning test.
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Fig. S10 SEM image of 0.1-LMN after long-term reaction.
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Table S1 compares with other non-noble metal HER catalysts.

Catalyst Electrolyte η10 (V vs.RHE) Reference

This Work 1.0 M KOH 0.131

CoSe2/c-CoP 0.5 M H2SO4 0.127 [1]

Co12@Ni3S2/NF 1.0 M KOH 0.297 [2]

NiCo2S4NW/NF 1.0 M KOH 0.260 [3]

THTNi 2DSP 0.5 M KOH 0.574 [4]

Ni-Co-S/Ni 1.0 M KOH 0.371 [5]

Ni3S2 
nanoparticles/CNTs

1.0 M KOH 0.480 [6]
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Table S2 Comparison of stability of different materials.

Catalyst Electrolyte

Glycerol 

concent-

ation

Settlin-

g time

Current/Curr-

ent density

Initial 

potential

Terminal 

potential

Refere-

nce

This Work 1.0 M KOH 0.5 M 20 h 200 mA cm−2 1.54 V 1.912 V

SnO2/CoS

1.097

1.0 M KOH 0.1 M 3000 s 100 mA 1.05 V 1.24 V [7]

NiO/NF 1.0 M KOH 0.1 M 15 h 10 mA cm−2 1.35 V 1.45 V [8]

Ni3N/WO3 1.0 M KOH 0.1 M 24 h 10 mA cm−2 1.45 V 1.56 V [9]

PtSA-NiCo 

LDH/NF
1.0 M KOH 0.1 M 24 h 10 mA cm−2 1.25 V 1.52 V [10]

CoNiCuM

nMo/CF
1.0 M KOH 0.1 M 25 h 10 mA cm−2 1.21 V 1.26 V [11]

Ni-Mo-

N/CFC
1.0 M KOH 0.1 M 11 h 10 mA cm−2 1.29 V 1.48 V [12]
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