## **Supporting Information**

## Non-noble metal Li, Mn co-doped Ni<sub>3</sub>S<sub>2</sub> electrocatalyst for glycerol oxidation synergistic coupling to promote hydrogen evolution reaction

Qingtao Wang<sup>a,\*</sup>, Xiaoling Zhou<sup>a</sup>, Hanbin Jin<sup>a</sup>, Lulu Guo<sup>a</sup>, Yanxia Wu<sup>a</sup>, Shufang Ren<sup>b,\*</sup>

a Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China

b Key Laboratory of Evidence Science Research and Application of Gansu Province, Gansu University of Political Science and Law, Lanzhou 730070, China

Qingtao Wang: wangqt@nwnu.edu.cn

Shufang Ren: rsf@gsupl.edu.cn

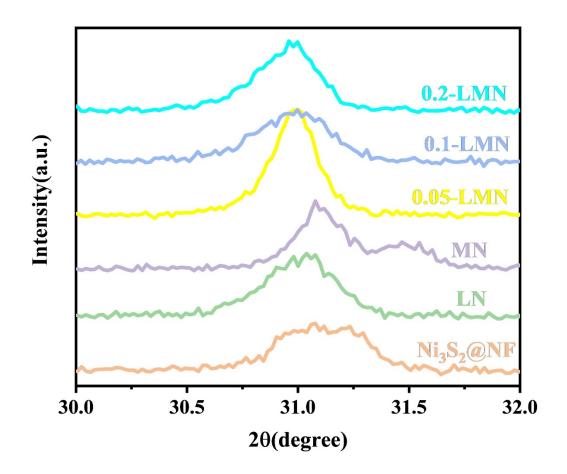



Fig. S1 n-LMN,LN,MN, and Ni $_3S_2@NF$  highest diffraction peak angle shift.

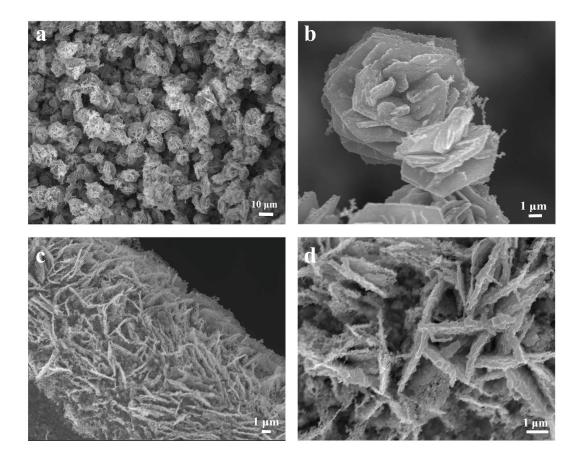



Fig. S2 The SEM images of a, b MN and c, d LN at different multiples were obtained.

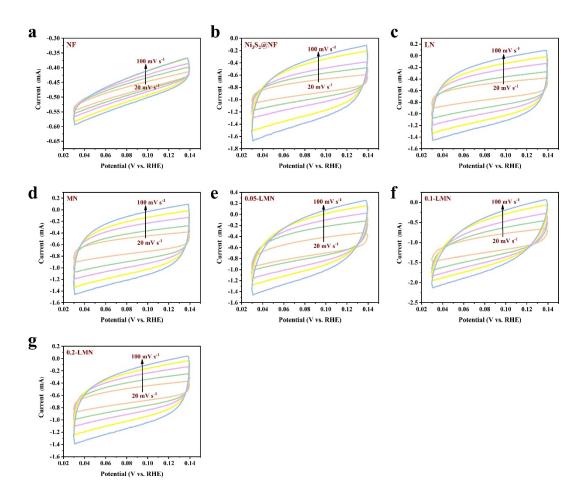



Fig. S3 Cyclic voltammetry curves of different materials between 0.03-

0.138 V vs. RHE.

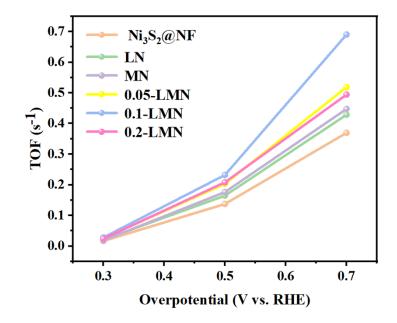



Fig. S4 The TOF of HER in Ni<sub>3</sub>S<sub>2</sub>@NF, LN, MN, 0.05-LMN, 0.1-LMN,

and 0.2-LMN at different overpotentials.

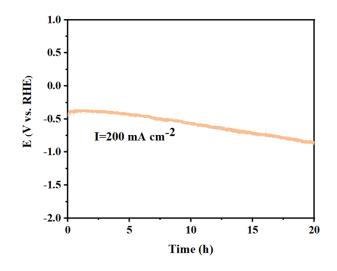



Fig. S5 The stability of 0.1-LMN catalyzed HER at a current density of

200 mA cm<sup>-2</sup>.

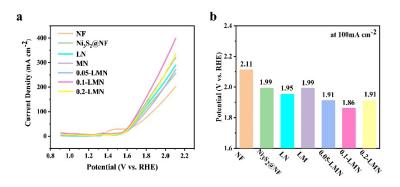



Fig. S6 The (a) LSV curve of OER catalyzed by different materials; (b) Overpotential comparison at a current density of 100 mA cm<sup>-2</sup>.

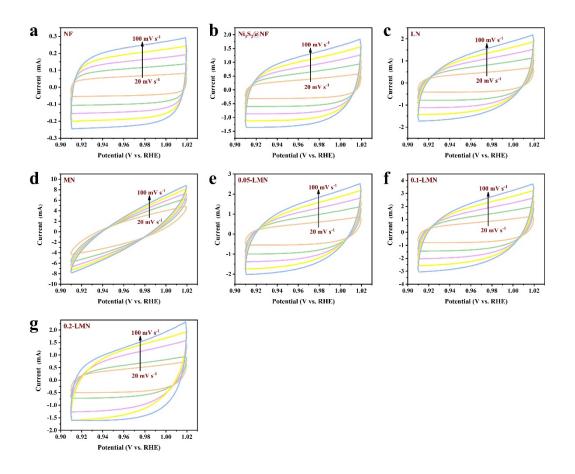



Fig. S7 Cyclic voltammetry curves of different materials between 0.909-

1.019 V vs. RHE.

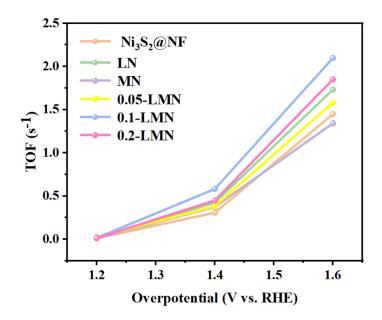



Fig. S8 The TOF of GOR in Ni<sub>3</sub>S<sub>2</sub>@NF, LN, MN, 0.05-LMN, 0.1-LMN,

and 0.2-LMN at different overpotentials.

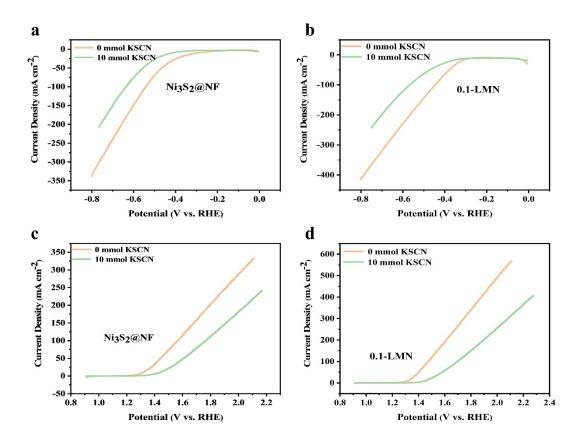



Fig. S9 The electrocatalytic performance of  $Ni_3S_2$ @NF and 0.1-LMN

before and after poisoning test.

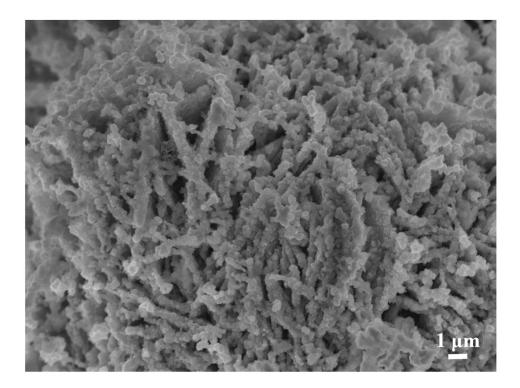



Fig. S10 SEM image of 0.1-LMN after long-term reaction.

| Catalyst                                             | Electrolyte                     | η <sub>10</sub> (V vs.RHE) | Reference |  |
|------------------------------------------------------|---------------------------------|----------------------------|-----------|--|
| This Work                                            | 1.0 M KOH                       | 0.131                      |           |  |
| CoSe <sub>2</sub> /c-CoP                             | $0.5 \text{ M H}_2 \text{SO}_4$ | 0.127                      | [1]       |  |
| Co <sub>12</sub> @Ni <sub>3</sub> S <sub>2</sub> /NF | 1.0 M KOH                       | 0.297                      | [2]       |  |
| NiCo <sub>2</sub> S <sub>4</sub> NW/NF               | 1.0 M KOH                       | 0.260                      | [3]       |  |
| THTNi 2DSP                                           | 0.5 M KOH                       | 0.574                      | [4]       |  |
| Ni-Co-S/Ni                                           | 1.0 M KOH                       | 0.371                      | [5]       |  |
| $Ni_3S_2$ nanoparticles/CNTs                         | 1.0 M KOH                       | 0.480                      | [6]       |  |

Table S1 compares with other non-noble metal HER catalysts.

| Catalyst                          | Electrolyte | Glycerol          | Settlin- | Current/Curr-            | Initial   | Terminal  | Refere- |
|-----------------------------------|-------------|-------------------|----------|--------------------------|-----------|-----------|---------|
|                                   |             | concent-<br>ation | g time   | ent density              | potential | potential | nce     |
| This Work                         | 1.0 M KOH   | 0.5 M             | 20 h     | $200 \text{ mA cm}^{-2}$ | 1.54 V    | 1.912 V   |         |
| SnO <sub>2</sub> /CoS             | 1.0 M KOH   | 0.1 M             | 3000 s   | 100 mA                   | 1.05 V    | 1.24 V    | [7]     |
| NiO/NF                            | 1.0 M KOH   | 0.1 M             | 15 h     | $10 \text{ mA cm}^{-2}$  | 1.35 V    | 1.45 V    | [8]     |
| Ni <sub>3</sub> N/WO <sub>3</sub> | 1.0 M KOH   | 0.1 M             | 24 h     | $10 \text{ mA cm}^{-2}$  | 1.45 V    | 1.56 V    | [9]     |
| Pt <sub>SA</sub> -NiCo<br>LDH/NF  | 1.0 M KOH   | 0.1 M             | 24 h     | $10 \text{ mA cm}^{-2}$  | 1.25 V    | 1.52 V    | [10]    |
| CoNiCuM<br>nMo/CF                 | 1.0 M KOH   | 0.1 M             | 25 h     | $10 \text{ mA cm}^{-2}$  | 1.21 V    | 1.26 V    | [11]    |
| Ni-Mo-<br>N/CFC                   | 1.0 M KOH   | 0.1 M             | 11 h     | 10 mA cm <sup>-2</sup>   | 1.29 V    | 1.48 V    | [12]    |

## Table S2 Comparison of stability of different materials.

## Reference

[1] SHEN S, WANG Z, LIN Z, et al. Crystalline-Amorphous Interfaces Coupling of CoSe<sub>2</sub>/CoP with Optimized d-Band Center and Boosted Electrocatalytic Hydrogen Evolution [J]. Advanced Materials, 2022, 34(13).

[2] TONG X, LI Y, PANG N, et al. Co-doped Ni<sub>3</sub>S<sub>2</sub> porous nanocones as high performance bifunctional electrocatalysts in water splitting [J]. Chemical Engineering Journal, 2021, 425.

[3] D.N. Liu, Q. Lu, Y.L. Luo, X.P. Sun, A.M. Asiri, NiCo<sub>2</sub>S<sub>4</sub> nanowires array as an efficient bifunctional electrocatalyst for full water splitting with superior activity, Nanoscale, 7 (2015), 15122-15126.

[4] DONG R, PFEFFERMANN M, LIANG H, et al. Large-Area, Free-Standing, Two Dimensional Supramolecular Polymer Single-Layer Sheets for Highly Efficient Electrocatalytic Hydrogen Evolution [J]. Angewandte Chemie International Edition, 2015, 54(41): 12058-63.

[5] ZHANG D, HE W, ZHANG Z, et al. Structure-design and synthesis of Nickel Cobalt-Sulfur arrays on nickel foam for efficient hydrogen evolution [J]. Journal of Alloys and Compounds, 2019, 785: 468-74.

[6] T.W. Lin, C.J. Liu, C.S. Dai, Ni<sub>3</sub>S<sub>2</sub>/carbon nanotube nanocomposite as electrode material for hydrogen evolution reaction in alkaline electrolyte and enzyme-free glucose detection, Appl. Catal. B., 154 (2014), 213-220.

[7] XIE X, ZHANG C, XIANG M, et al. SnO2/CoS1.097 heterojunction as a green

13

electrocatalyst for hydrogen evolution linking to assistant glycerol oxidation [J]. Green Chemistry, 2023, 25(22): 9405-12.

[8] LI S, LIU D, WANG G, et al. Vertical 3D Nanostructures Boost Efficient HydrogenProduction Coupled with Glycerol Oxidation Under Alkaline Conditions [J].Nanomicro Lett, 2023, 15(1): 189.

[9] WANG H, ZHAN W, JIANG S, et al. eterointerface-Rich Ni(3)N/WO(3) Hierarchical Nanoarrays for Efficient Glycerol Oxidation-Assisted Alkaline Hydrogen Evolution [J]. ChemSusChem, 2024: e202400624.

[10] YU H, WANG W, MAO Q, et al. Pt single atom captured by oxygen vacancy-rich NiCo layered double hydroxides for coupling hydrogen evolution with selective oxidation of glycerol to formate [J]. Applied Catalysis B: Environmental, 2023, 330.

[11] YAO H, WANG Y, ZHENG Y, et al. High-entropy selenides: A new platform for highly selective oxidation of glycerol to formate and energy-saving hydrogen evolution in alkali-acid hybrid electrolytic cell [J]. Nano Research, 2023, 16(8): 10832-9.

[12] LI Y, WEI X, CHEN L, et al. Nickel-molybdenum nitride nanoplate electrocatalysts for concurrent electrolytic hydrogen and formate productions [J]. Nat Commun, 2019, 10(1): 5335.