Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information

Structure-Property Relationships in TMD Materials AB₂ (A = Nb, Ta; B = S, Se, Te):

Assessing Exchange-Correlation Functionals

Sushant Kumar Behera, Praveen C Ramamurthy

Organic Nano Electronic Group, Department of Materials Engineering, Indian Institute of Science, Bangalore -560012, India.

Email: onegroupb203@gmail.com

Non-Spin orbit Coupling (NSOC) Case:

Table S1: Details of the geometry optimization for all the 06 systems are tabulated below for LDA XC functional.

Functional	System	Phase	a(Å)		c(Å)		A-B (Å)		Angle (⁰)		vdW ga	p (Å)
			Cal.	Expt.	Cal.	Expt.	Cal.	Expt.	Cal.	Expt.	Cal.	Expt.
	NbS ₂	2H	3.284	3.368	11.408	12.624	2.457	2.495	78.954	77.575	3.200	3.732
		1T	3.301	3.403	5.671	6.202	2.460	2.489	95.704	93.767	3.192	3.707
	NbSe ₂	2H	3.404	3.499	12.103	13.413	2.580	2.622	80.750	79.201	3.345	3.924
LDA		1T	3.412	3.518	6.037	6.528	2.583	2.614	97.308	95.431	3.339	3.820
	NbTe ₂	2H	14.343	15.067	9.204	9.607	2.803	2.841	79.655	81.262	3.387	3.732
		1T	3.622	3.720	6.556	7.148	2.771	2.814	98.387	97.247	3.591	4.116
	TaS_2	2H	3.267	3.320	11.594	12.300	2.445	2.488	79.037	79.234	3.281	3.540
		1T	3.293	3.360	5.714	5.900	2.445	2.436	95.319	92.837	3.254	3.530
	TaSe ₂	2H	3.389	3.476	12.231	13.418	2.568	2.607	80.762	79.354	3.405	3.930
		1T	3.407	3.509	6.087	6.599	2.568	2.599	96.888	95.058	3.410	3.910
	TaTe ₂	2H	14.438	15.235	9.328	9.651	2.797	2.833	81.514	81.158	3.489	3.814
		1T	3.618	3.740	6.626	6.732	2.761	2.599	98.027	97.636	3.679	3.886

Functional	System	Phase	a(.	Å)	c(.	Å)	A-B	5 (Å)	Ang	$le(^0)$	vdW ga	ap (Å)
			Cal.	Expt.	Cal.	Expt.	Cal.	Expt.	Cal.	Expt.	Cal.	Expt.
	NbS ₂	2H	3.356	3.368	13.667	12.624	2.492	2.495	77.926	77.575	4.169	3.732
		1T	3.382	3.403	6.666	6.202	2.493	2.489	94.592	93.767	4.064	3.707
	NbSe ₂	2H	3.481	3.499	13.728	13.413	2.622	2.622	79.932	79.201	4.027	3.924
		1T	3.492	3.518	6.802	6.528	2.623	2.614	96.518	95.431	3.994	3.820
PBE	NbTe ₂	2H	15.184	15.067	9.628	9.607	2.852	2.841	81.201	81.262	3.712	3.732
		1T	3.683	3.720	7.360	7.148	2.818	2.814	98.376	97.247	4.235	4.116
	TaS_2	2H	3.336	3.320	13.820	12.300	2.479	2.488	78.049	79.234	4.246	3.540
		1T	3.369	3.360	6.712	5.900	2.478	2.436	94.345	92.837	4.128	3.530
	TaSe ₂	2H	3.466	3.476	14.249	13.418	2.609	2.607	79.854	79.354	4.285	3.930
_		1T	3.491	3.509	6.918	6.599	2.608	2.599	95.962	95.058	4.133	3.910
	TaTe ₂	2H	15.354	15.235	9.686	9.651	2.844	2.833	81.001	81.158	3.911	3.814
		1T	3.685	3.740	7.380	6.732	2.806	2.599	97.883	97.636	4.301	3.886

Table S2: Details of the geometry optimization for all the 06 systems are tabulated below for PBE XC functional.

Table S3: Details of the geometry optimization for all the 06 systems are tabulated below for PBESol XC functional.

Functional	System	Phase	a(.	Å)	c(.	Å)	A-B	(Å)	Ang	$le(^{0})$	vdW g	ap (Å)
			Cal.	Expt.	Cal.	Expt.	Cal.	Expt.	Cal.	Expt.	Cal.	Expt.
	NbS ₂	2H	3.306	3.368	11.854	12.624	2.469	2.495	78.764	77.575	3.387	3.732
		1T	3.324	3.403	5.846	6.202	2.471	2.489	95.505	93.767	3.337	3.707
	NbSe ₂	2H	3.425	3.499	12.355	13.413	2.594	2.622	80.686	79.201	3.448	3.924
		1T	3.432	3.518	6.185	6.528	2.597	2.614	97.273	95.431	3.453	3.820
PBESol	NbTe ₂	2H	14.848	15.067	9.402	9.607	2.825	2.841	81.417	81.262	3.547	3.732
		1T	3.640	3.720	6.667	7.148	2.787	2.814	98.466	97.247	3.667	4.116
	TaS ₂	2H	3.292	3.320	12.161	12.300	2.458	2.488	78.741	79.234	3.519	3.540
		1T	3.317	3.360	5.923	5.900	2.459	2.436	95.135	92.837	3.425	3.530
	TaSe ₂	2H	3.413	3.476	12.623	13.418	2.584	2.607	80.617	79.354	3.560	3.930
		1T	3.429	3.509	6.256	6.599	2.583	2.599	96.813	95.058	3.543	3.910
	TaTe ₂	2H	15.235	15.235	9.651	9.651	2.833	2.833	81.185	81.158	3.905	3.814
		1 T	3.646	3.740	6.882	6.732	2.773	2.599	98.667	97.636	3.865	3.886

Table S4: Details of the geometry optimization for all the 06 systems are tabulated below for SCAN XC functional.

Functional	System	Phase	a(Å)	c(.	Å)	A-B	6 (Å)	Ang	$le(^0)$	vdW g	(Å)
			Cal.	Expt.	Cal.	Expt.	Cal.	Expt.	Cal.	Expt.	Cal.	Expt.
	NbS ₂	2H	3.363	3.368	12.735	12.624	2.490	2.495	77.526	77.575	3.785	3.732
		1T	3.385	3.403	6.047	6.202	2.490	2.489	94.351	93.767	3.548	3.707
	NbSe ₂	2H	3.478	3.499	13.134	13.413	2.609	2.622	79.350	79.201	3.807	3.924
SCAN		1T	3.506	3.518	6.378	6.528	2.613	2.614	95.734	95.431	3.680	3.820
SCAN	NbTe ₂	2H	15.067	15.067	9.607	9.607	2.841	2.841	81.773	81.262	3.836	3.732
		1T	3.656	3.720	7.170	7.148	2.794	2.814	98.299	97.247	4.092	4.116
	TaS ₂	2H	3.319	3.320	12.161	12.300	2.464	2.488	77.921	79.234	3.543	3.540
		1T	3.359	3.360	5.993	5.900	2.463	2.436	93.996	92.837	3.536	3.530
	TaSe ₂	2H	3.445	3.476	13.224	13.418	2.585	2.607	79.376	79.354	3.861	3.930
		1T	3.482	3.509	6.640	6.599	2.583	2.599	95.262	95.058	3.946	3.910

TaTe ₂	2H	14.974	15.235	9.462	9.651	2.772	2.833	81.251	81.158	3.854	3.814
	1T	3.655	3.740	7.243	6.732	2.771	2.599	97.558	97.636	4.226	3.886

Table S5: Details of the geometry optimization for all the 06 systems are tabulated below for optB88-vdW vdW-DF functional.

Functional	System	Phase	a(Å)	c(.	Å)	A-B	(Å)	Ang	le (⁰)	vdW g	ap (Å)
			Cal.	Expt.	Cal.	Expt.	Cal.	Expt.	Cal.	Expt.	Cal.	Expt.
	NbS ₂	2H	3.358	3.368	12.054	12.624	2.497	2.495	78.169	77.575	3.470	3.732
		1T	3.386	3.403	5.939	6.202	2.498	2.489	94.678	93.767	3.438	3.707
	NbSe ₂	2H	3.486	3.499	12.732	13.413	2.628	2.622	80.043	79.201	3.597	3.924
optB88-	_	1T	3.505	3.518	6.306	6.528	2.628	2.614	96.360	95.431	3.578	3.820
	NbTe ₂	2H	14.961	15.067	9.556	9.607	2.856	2.841	80.884	81.262	3.625	3.732
vaw		1T	3.720	3.720	6.874	7.148	2.824	2.814	97.607	97.247	3.860	4.116
	TaS_2	2H	3.339	3.320	12.175	12.300	2.485	2.488	78.272	79.234	3.525	3.540
	_	1T	3.376	3.360	5.964	5.900	2.483	2.436	94.374	92.837	3.482	3.530
	TaSe ₂	2H	3.471	3.476	12.856	13.418	2.615	2.607	79.991	79.354	3.661	3.930
		1T	3.501	3.509	6.327	6.599	2.614	2.599	95.903	95.058	3.628	3.910
	TaTe ₂	2H	14.953	15.235	9.538	9.651	2.846	2.833	80.335	81.158	3.750	3.814
		1T	3.720	3.740	6.917	6.732	2.809	2.599	97.154	97.636	3.938	3.886

Table S6: Details of the geometry optimization for all the 06 systems are tabulated below for optPBE-vdW vdW-DF functional.

Functional	System	Phase	a(.	Å)	c(.	Å)	A-B	(Å)	Ang	le (⁰)	vdW g	(Å)
			Cal.	Expt.	Cal.	Expt.	Cal.	Expt.	Cal.	Expt.	Cal.	Expt.
	NbS ₂	2H	3.371	3.368	12.352	12.624	2.504	2.495	77.986	77.575	3.597	3.732
		1T	3.398	3.403	6.072	6.202	2.505	2.489	94.592	93.767	3.548	3.707
	NbSe ₂	2H	3.500	3.499	13.009	13.413	2.636	2.622	79.880	79.201	3.717	3.924
ODE		1T	3.519	3.518	6.456	6.528	2.636	2.614	96.240	95.431	3.703	3.820
optPBE-	NbTe ₂	2H	15.171	15.067	9.650	9.607	2.703	2.841	81.664	81.262	3.823	3.732
Vaw		1T	3.727	3.720	7.059	7.148	2.832	2.814	97.722	97.247	4.002	4.116
	TaS_2	2H	3.350	3.320	12.456	12.300	2.491	2.488	78.150	79.234	3.646	3.540
		1T	3.389	3.360	6.105	5.900	2.489	2.436	94.226	92.837	3.603	3.530
	TaSe ₂	2H	3.483	3.476	13.141	13.418	2.623	2.607	79.893	79.354	3.777	3.930
		1T	3.514	3.509	6.478	6.599	2.621	2.599	95.799	95.058	3.755	3.910
	TaTe ₂	2H	15.192	15.235	9.641	9.651	2.856	2.833	81.412	81.158	3.840	3.814
		1T	3.729	3.740	7.074	6.732	2.818	2.599	97.195	97.636	4.065	3.886

Table S7: Details of the geometry optimization for all the 06 systems are tabulated below for vdW-DF2 vdW-DF functional.

Functional	System	Phase	a(Å)	c(Å)	A-B	5 (Å)	Ang	le (⁰)	vdW g	gap (Å)
			Cal.	Expt.	Cal.	Expt.	Cal.	Expt.	Cal.	Expt.	Cal.	Expt.
	NbS ₂	2H	3.454	3.368	12.548	12.624	2.546	2.495	76.920	77.575	3.684	3.732
		1T	3.510	3.403	6.135	6.202	2.546	2.489	92.875	93.767	3.662	3.707
	NbSe ₂	2H	3.604	3.499	13.362	13.413	2.690	2.622	78.670	79.201	3.870	3.924
		1T	3.644	3.518	6.556	6.528	2.689	2.614	94.675	95.431	3.836	3.820
vdW-DF2	NbTe ₂	2H	14.861	15.067	9.464	9.607	2.845	2.841	81.722	81.262	3.670	3.732
		1T	3.880	3.720	7.205	7.148	2.891	2.814	95.421	97.247	4.184	4.116
	TaS_2	2H	3.426	3.320	12.632	12.300	2.530	2.488	77.168	79.234	3.725	3.540
		1T	3.487	3.360	6.163	5.900	2.528	2.436	92.786	92.837	3.701	3.530

	TaSe ₂	2H	3.580	3.476	13.443	13.418	2.674	2.607	78.789	79.354	3.917	3.930
		1T	3.637	3.509	6.562	6.599	2.672	2.599	94.329	95.058	3.876	3.910
	TaTe ₂	2H	15.617	15.235	9.970	9.651	2.742	2.833	81.321	81.158	4.003	3.814
		1T	3.888	3.740	7.217	6.732	2.688	2.599	98.002	97.636	3.789	3.886

Table S8: Details of the geometry optimization for all the 06 systems are tabulated below for rev-vdW-DF2 vdW-DF functional.

Functional	System	Phase	a(.	Å)	c(.	Å)	A-B	5 (Å)	Ang	le (⁰)	vdW	gap (Å)
			Cal.	Expt.	Cal.	Expt.	Cal.	Expt.	Cal.	Expt.	Cal.	Expt.
	NbS ₂	2H	3.333	3.368	11.884	12.624	2.487	2.495	78.615	77.575	3.392	3.732
		1T	3.356	3.403	5.866	6.202	2.488	2.489	95.173	93.767	3.359	3.707
	NbSe ₂	2H	3.457	3.499	12.512	13.413	2.615	2.622	80.501	79.201	3.502	3.924
		1T	3.470	3.518	6.225	6.528	2.616	2.614	96.913	95.431	3.491	3.820
	NbTe ₂	2H	14.861	15.067	9.464	9.607	2.844	2.841	81.728	81.262	3.670	3.732
rev-vdW-		1T	3.681	3.720	6.766	7.148	2.809	2.814	98.118	97.247	3.752	4.116
DF2	TaS_2	2H	3.315	3.320	12.018	12.300	2.475	2.488	78.719	79.234	3.450	3.540
		1T	3.347	3.360	5.901	5.900	2.473	2.436	94.849	92.837	3.411	3.530
	TaSe ₂	2H	3.441	3.476	12.661	13.418	2.601	2.607	80.378	79.354	3.576	3.930
		1T	3.467	3.509	6.257	6.599	2.602	2.599	96.471	95.058	3.549	3.910
	TaTe ₂	2H	14.793	15.235	9.435	9.651	2.834	2.833	81.008	81.158	3.562	3.814
		1 T	3.677	3.740	6.845	6.732	2.799	2.599	97.825	97.636	3.849	3.886

Table S9: Details of the geometry optimization for all the 06 systems are tabulated below for SCAN+rVV10 vdW-DF functional.

Functional	System	Phase	a(.	Å)	c(.	Å)	A-B	5 (Å)	Ang	le $(^{0})$	vdW g	ap (Å)
			Cal.	Expt.	Cal.	Expt.	Cal.	Expt.	Cal.	Expt.	Cal.	Expt.
	NbS ₂	2H	3.348	3.368	11.945	12.624	2.481	2.495	77.663	77.575	3.452	3.732
		1T	3.361	3.403	6.070	6.202	2.490	2.489	95.117	93.767	3.529	3.707
	NbSe ₂	2H	3.463	3.499	12.592	13.413	2.606	2.622	79.810	79.201	3.565	3.924
COANT MULLO		1T	3.486	3.518	6.295	6.528	2.608	2.614	96.149	95.431	3.593	3.820
SCAN+rvv10	NbTe ₂	2H	15.067	15.067	9.607	9.607	2.842	2.841	81.728	81.262	3.835	3.732
		1T	3.649	3.720	6.893	7.148	2.792	2.814	98.411	97.247	3.854	4.116
	TaS ₂	2H	3.311	3.320	12.095	12.300	2.461	2.488	78.071	79.234	3.513	3.540
		1T	3.348	3.360	5.960	5.900	2.458	2.436	94.174	92.837	3.503	3.530
	TaSe ₂	2H	3.430	3.476	12.606	13.418	2.584	2.607	79.914	79.354	3.583	3.930
		1T	3.461	3.509	6.299	6.599	2.581	2.599	95.814	95.058	3.630	3.910
	TaTe ₂	2H	15.067	15.235	9.578	9.651	2.843	2.833	81.003	81.158	3.859	3.814
		1 T	3.635	3.740	6.904	6.732	2.774	2.599	97.954	97.636	3.901	3.886

Table S10: Details of the energy values and the 1T-2H difference for all the 06 systems for 09 XC functional (04 functional+05 vdW-DFs).

Functional	Serial	System	1T (eV/atom)	2H (eV/atom)	1T-2H (eV/atom)
	Ι	NbS ₂	-7.9093	-7.9451	0.0358
LDA		NbSe ₂	-7.3420	-7.3750	0.0330
		NbTe2	-6.7006	-6.7463	0.0457
	II	TaS_2	-8.5216	-8.5450	0.0234
		TaSe ₂	-7.8872	-7.9107	0.0235

		TaTe ₂	-7.1591	-7.2150	0.0559
PBE	Ι	NbS ₂	-7.1010	-7.1355	0.0345
		NbSe ₂	-6.5158	-6.5466	0.0308
		NbTe2	-5.8838	-5.9206	0.0368
	II	TaS ₂	-7.7320	-7.7537	0.0217
		TaSe ₂	-7.0778	-7.1000	0.0222
		TaTe ₂	-6.3604	-6.4013	0.0409
	Ι	NbS ₂	-7.5761	-7.6120	0.0359
		NbSe ₂	-7.0159	-7.0482	0.0323
		NbTe2	-6.3976	-6.4431	0.0455
PBESol	II	TaS ₂	-8.2058	-8.2298	0.0240
		TaSe ₂	-7.5774	-7.6003	0.0229
		TaTe ₂	-6.8728	-6.3965	-0.4763
	Ι	NbS ₂	-18.5616	-18.5951	0.0335
SCAN		NbSe ₂	-25.3056	-25.3389	0.0333
SCAN		NbTe2	-36.3233	-36.3661	0.0428
	II	TaS_2	-29.7512	-29.7739	0.0227
		TaSe ₂	-36.4291	-36.4575	0.0284
		TaTe ₂	-47.3592	-47.4125	0.0533
	Ι	NbS ₂	-5.2066	-5.2365	0.0299
optB88-vdW		NbSe ₂	-4.5201	-4.5466	0.0265
opizioo van		NbTe2	-3.6728	-3.7087	0.0359
	II	TaS_2	-5.9236	-5.9401	0.0165
		TaSe ₂	-5.1703	-5.1879	0.0176
		TaTe ₂	-4.2432	-4.2843	0.0411
	Ι	NbS ₂	-5.0613	-5.0904	0.0291
		NbSe ₂	-4.3643	-4.3916	0.0273
optPBE-vdW		NbTe2	-3.5169	-3.5519	0.0350
	II	TaS_2	-5.7871	-5.8043	0.0172
		TaSe ₂	-5.0243	-5.0428	0.0185
		TaTe ₂	-4.0969	-4.1363	0.0394
	Ι	NbS ₂	-4.7365	-4.7513	0.0148
		NbSe ₂	-3.9996	-4.0176	0.0180
vdW-DF2		NbTe2	-3.1393	-4.0890	0.9497
	II	TaS_2	-5.4015	-5.4050	0.0035
		TaSe ₂	-4.5996	-4.6077	0.0081
		TaTe ₂	-3.6684	-3.6943	0.0259
	Ι	NbS ₂	-5.5384	-5.5706	0.0322
row wdW DE2		NbSe ₂	-4.8663	-4.8958	0.0295
rev-vdW-DF2		NbTe2	-4.0477	-4.0890	0.0413
	II	TaS_2	-6.2621	-6.2830	0.0209
		TaSe ₂	-5.5235	-5.5445	0.0210
		TaTe ₂	-4.6222	-4.6708	0.0558
	Ι	NbS ₂	-18.4604	-18.6592	0.1988
		NbSe ₂	-25.1990	-25.2352	0.0362
SCAN+rVV10		NbTe2	-36.2079	-36.2526	0.0447
	II	TaS ₂	-29.6609	-29.6856	0.0247
		TaSe ₂	-36.3306	-36.3581	0.0275

	TaTe ₂	-47.2474	-47.3052	0.0578

Electronic Band structures:

Figure S1: Band structures of 1T phase of NbS₂ for all 09 XC functional (top level for LDA, PBE, PBESol, SCAN from left to right; bottom level for optB88-vdW, optPBE-vdW, vdW-DF2, rev-vdW-DF2 and SCAN+rVV10 from left to right).

Figure S2: Band structures of 2H phase of NbS₂ for all 09 XC functional (top level for LDA, PBE, PBESol, SCAN from left to right; bottom level for optB88-vdW, optPBE-vdW, vdW-DF2, rev-vdW-DF2 and SCAN+rVV10 from left to right).

Figure S3: Band structures of 1T phase of NbSe₂ for all 09 XC functional (top level for LDA, PBE, PBESol, SCAN from left to right; bottom level for optB88-vdW, optPBE-vdW, vdW-DF2, rev-vdW-DF2 and SCAN+rVV10 from left to right).

Figure S4: Band structures of 2H phase of NbSe₂ for all 09 XC functional (top level for LDA, PBE, PBESol, SCAN from left to right; below column form for optB88-vdW, optPBE-vdW, vdW-DF2, rev-vdW-DF2 and SCAN+rVV10 from top to bottom).

Figure S5: Band structures of 1T phase of NbTe₂ for all 09 XC functional (left column for LDA, PBE, PBESol, SCAN from top to bottom; right column for optB88-vdW, optPBE-vdW, vdW-DF2, rev-vdW-DF2 and SCAN+rVV10 from top to bottom).

Figure S6: Band structures of 1T phase of TaS₂ for all 09 XC functional (left column for LDA, PBE, PBESol, SCAN from top to bottom; right column for optB88-vdW, optPBE-vdW, vdW-DF2, rev-vdW-DF2 and SCAN+rVV10 from top to bottom).

Figure S7: Band structures of 2H phase of TaS₂ for all 09 XC functional (left column for LDA, PBE, PBESol, SCAN from top to bottom; right column for optB88-vdW, optPBE-vdW, vdW-DF2, rev-vdW-DF2 and SCAN+rVV10 from top to bottom).

Figure S8: Band structures of 1T phase of TaSe₂ for all 09 XC functional (left column for LDA, PBE, PBESol, SCAN from top to bottom; right column for optB88-vdW, optPBE-vdW, vdW-DF2, rev-vdW-DF2 and SCAN+rVV10 from top to bottom).

Figure S9: Band structures of 2H phase of TaSe₂ for all 09 XC functional (left column for LDA, PBE, PBESol, SCAN from top to bottom; right column for optB88-vdW, optPBE-vdW, vdW-DF2, rev-vdW-DF2 and SCAN+rVV10 from top to bottom).

Figure S10: Band structures of 1T phase of TaTe₂ for all 09 XC functional (left column for LDA, PBE, PBESol, SCAN from top to bottom; right column for optB88-vdW, optPBE-vdW, vdW-DF2, rev-vdW-DF2 and SCAN+rVV10 from top to bottom).

Phonon response plot

For the phonon calculations, we consider 2*2*3 supercell for the 3 atom unit cells (total 36 atoms) in a few 1T phases of the system. Similarly, 2*2*2 supercell has been taken for the 6-atom unit cell (total 48 atoms) and 1*3*1 supercell for the 18-atom unit cell (total 54 atoms). In this way, it is obtained 18 displacements for 1T phase and 9 displacements for 2H phase for 3 atom unit cells, giving 36 displacements for both 1T and 2H phases of 6 atom unit cells and 108 displacements for the 2H phase of an 18-atom unit cell. In this way, it is a tedious calculation for phonons, which is still going on for NSOC cases. Some of the phonon plots are shown below

Figure S11: Phonon dispersion plot for 1T phase of TaS_2 for vdW-DF2 van der Waals XC functional in absence of SOC.

Figure S12: Fermi surface plots for 1T phase of NbS₂ all 09 XC functional (top level for LDA, PBE, PBESol, SCAN from left to right; bottom level for optB88-vdW, optPBE-vdW, vdW-DF2, rev-vdW-DF2 and SCAN+rVV10 from left to right) in absence of SOC.

Figure S13: Fermi surface plots for 2H phase of NbS₂ all 09 XC functional in absence of SOC.

Figure S14: Fermi surface plots for 1T phase of NbSe₂ all 09 XC functional (top level for LDA, PBE, PBESol, SCAN from left to right; bottom level for optB88-vdW, optPBE-vdW, vdW-DF2, rev-vdW-DF2 and SCAN+rVV10 from left to right) in absence of SOC.

Figure S15: Fermi surface plots for 2H phase of NbSe₂ all 09 XC functional in absence of SOC.

Figure S16: Fermi surface plots for 1T phase of NbTe₂ all 09 XC functional (top level for LDA, PBE, PBESol, SCAN from left to right; bottom level for optB88-vdW, optPBE-vdW, vdW-DF2, rev-vdW-DF2 and SCAN+rVV10 from left to right) in absence of SOC.

Figure S17: Fermi surface plots for 2H phase of NbTe₂ all 09 XC functional (top level for LDA, PBE, PBESol, SCAN from left to right; bottom level for optB88-vdW, optPBE-vdW, vdW-DF2, rev-vdW-DF2 and SCAN+rVV10 from left to right) in absence of SOC.

Figure S18: Fermi surface plots for 1T phase of TaS₂ all 09 XC functional (top level for LDA, PBE, PBESol, SCAN from left to right; bottom level for optB88-vdW, optPBE-vdW, vdW-DF2, rev-vdW-DF2 and SCAN+rVV10 from left to right) in absence of SOC.

Figure S19: Fermi surface plots for 2H phase of TaS₂ all 09 XC functional in absence of SOC.

Figure S20: Fermi surface plots for 1T phase of TaSe₂ all 09 XC functional (top level for LDA, PBE, PBESol, SCAN from left to right; bottom level for optB88-vdW, optPBE-vdW, vdW-DF2, rev-vdW-DF2 and SCAN+rVV10 from left to right) in absence of SOC.

Figure S21: Fermi surface plots for 2H phase of TaSe₂ all 09 XC functional in absence of SOC.

Figure S22: Fermi surface plots for 1T phase of TaTe₂ all 09 XC functional (top level for LDA, PBE, PBESol, SCAN from left to right; bottom level for optB88-vdW, optPBE-vdW, vdW-DF2, rev-vdW-DF2 and SCAN+rVV10 from left to right) in absence of SOC.

Figure S23: Fermi surface plots for 2H phase of TaTe₂ all 09 XC functional in absence of SOC.

Spin orbit Coupling (SOC) Case:

Similarly, the SOC optimization is complete for 1T phases of 6 systems which are shown below in tabular form.

Table S11: Details of the Energy comparison of SOC with NSOC (1T) geometry optimization for all the 06 systems are tabulated below for 04 XC and 05 vdW-DF functional in SOC case. Phase. It is noticed from the above table, the energy difference is in positive range, showing the energetic dynamic nature of SOC compared to NSOC case. The energy values are nearly same and higher in SOC case.

fxc	Phase	System	NSOC	SOC (eV/atom)	Difference
			(eV/atom)		(eV/atom)
		NbS ₂	-7.9093	-7.9276	0.0183
		NbSe ₂	-7.3420	-7.3755	0.0335
LDA	1T	NbTe ₂	-6.7006	-6.7914	0.0908
		TaS ₂	-8.5216	-8.5633	0.0417
		TaSe ₂	-7.8872	-7.9464	0.0592
		TaTe ₂	-7.1591	-7.2792	0.1201
		NbS ₂	-7.1010	-7.1186	0.0176
		NbSe ₂	-6.5158	-6.5480	0.0322
PBE	1T	NbTe ₂	-5.8838	-5.9716	0.0878
		TaS ₂	-7.7320	-7.7724	0.0404
		TaSe ₂	-7.0778	-7.1352	0.0574
		TaTe ₂	-6.3604	-6.4763	0.1159
		NbS ₂	-7.5761	-7.5938	0.0177
		NbSe ₂	-7.0159	-7.0475	0.0316
PBESol	1T	NbTe ₂	-6.3976	-6.4850	0.0874
		TaS ₂	-8.2058	-8.2464	0.0406
		TaSe ₂	-7.5774	-7.6350	0.0576
		TaTe ₂	-6.8728	-6.9880	0.1152
		NbS ₂	-18.5616	-18.5782	0.0166
		NbSe ₂	-25.3056	-25.3360	0.0304
SCAN	1T	NbTe ₂	-36.3233	-36.4073	0.0840
		TaS ₂	-29.7512	-29.7904	0.0392

		TaSe ₂	-36.4291	-36.4842	0.0551
		TaTe ₂	-47.3592	-47.4712	0.1120
		NbS ₂	-5.2066	-6.3385	1.1319
optB88-vdW		NbSe ₂	-4.5201	-5.7501	1.2300
	1T	NbTe ₂	-3.6728	-5.1115	1.4387
		TaS ₂	-5.9236	-6.9390	1.0154
		TaSe ₂	-5.1703	-6.2839	1.1136
		TaTe ₂	-4.2432	-5.5700	1.3268
		NbS ₂	-5.0613	-6.2161	1.1548
		NbSe ₂	-4.3643	-5.6133	1.2490
optPBE-vdW	1T	NbTe ₂	-3.5169	-4.9766	1.4597
		TaS ₂	-5.7871	-6.8193	1.0322
		TaSe ₂	-5.0243	-6.1554	1.1311
		TaTe ₂	-4.0969	-5.4439	1.3470
	1T	NbS ₂	-4.7365	-5.8835	1.1470
		NbSe ₂	-3.9996	-5.2423	1.2427
vdW-DF2		NbTe ₂	-3.1393	-4.5963	1.4570
		TaS ₂	-5.4015	-6.4328	1.0313
		TaSe ₂	-4.5996	-5.7306	1.1310
		TaTe ₂	-3.6684	-5.0212	1.3528
rev-vdW-DF2	1T	NbS ₂	-5.5384	-6.5986	1.0602
		NbSe ₂	-4.8663	-6.0089	1.1426
		NbTe ₂	-4.0477	-5.3798	1.3321
		TaS ₂	-6.2621	-7.2163	0.9542
		TaSe ₂	-5.5235	-6.5648	1.0413
		TaTe ₂	-4.6222	-5.8569	1.2347
SCAN+rVV10	1T	NbS ₂	-18.4604	-18.5776	0.1172
		NbSe ₂	-25.1990	-25.3360	0.1370
		NbTe ₂	-36.2079	-36.4077	0.1998
		TaS ₂	-29.6609	-29.7838	0.1229
		TaSe ₂	-36.3306	-36.4762	0.1456
		TaTe ₂	-47.2474	-47.4614	0.2140

The electronic band structures for the SOC cases are shown below;

Figure S24: The electronic band structures of 1T-NbS₂ for the SOC cases.

Figure S25: The electronic band structures of 1T-NbSe₂ for the SOC cases.

Figure S26: The electronic band structures of 1T-NbTe₂ for the SOC cases.

Figure S27: The electronic band structures of 1T-TaS₂ for the SOC cases.

Figure S28: The electronic band structures of 1T-TaSe₂ for the SOC cases.

Figure S29: The electronic band structures of 1T-TaTe₂ for the SOC cases.

Here, the Fermi surfaces from both NSOC and SOC cases are compared. It is noticed that both cases, the surface is almost same, irrespective of case. As, Fermi surfaces of maximum systems are shown for NSOC cases, we skip to show them for SOC cases. One case of Fermi surface comparison in 2D plotter form for NbS₂ in 1T phase has been shown in Figure 5. Similarly, the bands and density of states plot in both SOC and NSOC cases are compared, it has been noticed that both are well matching with each other with very minor deviation. Here, one case of 1T-NbS₂ has been shown in Figure S31 (for band) and Figure 5 (c) for DOS plot.

Figure S30: The band structure of 1T-NbS₂ for the both NSOC and SOC cases.

References:

- Patil, U.; Caffrey, N, M.; Composition dependence of the charge-driven phase transition in group-VI transition metal dichalcogenides. Physics Review B 100, 075424, 2019.
- [2] Qu, Y.; et. al. Hydrogenation-controlled phase transition on two-dimensional transition metal dichalcogenides and their unique physical and catalytic properties. Scientific Reports, 6:34186, 2016.
- [3] Shao, D., Luo, X., Lu, W. et al. Spin-orbit coupling enhanced superconductivity in Birich compounds ABi3 (A = Sr and Ba). Sci Rep 6, 21484 (2016).