Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information

Combating multidrug-resistant bacteria with nanostructured guanidine-based polymers

Jian-Bin Zhen ^{a,1,*}, Jia-Jia Yi ^{b,1,*}, Xin-Yi Bu ^a, Yi-Long Yao ^a, En-Peng Meng ^a,

^a Department of Materials Engineering, Taiyuan Institute of Technology, Taiyuan 030008, China

^b College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030600, China

Corresponding Author

Jian-Bin Zhen – Taiyuan Institute of Technology, Department of Materials Engineering, Taiyuan 030008, Shanxi Province, China; Email: zhenjb187@163.com

Characterization

Proton Nuclear Magnetic Resonance (¹H NMR)

The NMR spectra were recorded on a Bruker AV 400 MHz spectrometer using tetramethylsilane as an internal standard and DMSO- d_6 and D₂O as the solvents.

UV-vis Spectroscopy

The UV-vis absorption spectra were recorded on an Agilent 8453 UV-visible spectrophotometer (Agilent Technologies, CA, USA) using a quartz cell with a path length of 1.0 cm. The absorbance and transmittance spectra of GH and PGH@AgNPs were measured.

X-ray photoelectron spectroscopy (XPS)

The reduction of silver ions (Ag^+) to metallic silver was characterized using a VG Micro Tech ESCA 3000 X-ray photoelectron spectroscope (VG Scientific, Sussex, United Kingdom) equipped with a multichanneltron hemispherical electron energy analyzer. The sample was placed on Si(111) substrate, and the spectra were recorded. **X-ray diffraction (XRD)**

The crystal structure of PGH@AgNPs was investigated on a Rigaku, D/max-2500 X-

ray diffractometer using a Cu K α X-ray source at 60 Kv and 300 mA. The PGH@AgNPs solution was freeze-dried for XRD measurement. The XRD pattern was taken in the 2 θ range of 30-80° at a scan speed of 0.2 sec/step.

Scanning Electron Microscopy (SEM)

The morphologies of PGH@AgNPs and bacteria were observed using SEM. The PGH@AgNPs solution was spread on the silicon wafer and freeze-dried. Bacterial cells at the mid-log growth phase ($OD_{600}=0.4\sim0.6$) were treated with PGH@AgNPs. After treatment, bacteria were collected, washed with PBS, and fixed with 2.5% (v/v) glutaraldehyde for 2-4 h. Then, bacteria were dehydrated using 30, 50, 70, 90 and 100% ethanol. After dehydration, bacteria were re-suspended in tertiary butyl alcohol, dripped on the silicon wafer, and freeze-dried. Samples were coated with gold before observation.

Zeta Potential

Zeta potential was measured on a water Nano-ZS 90 Nanosizer (Malvern Instrument Ltd., Worcestershire, UK) at a fixed scattering angle of 90° at room temperature.

Scheme S1. Synthetic route of GH

Scheme S2. Synthetic route of PGH

Figure S1. ¹H NMR spectrum of GH in DMSO-d6

Figure S2. ¹H NMR spectrum of PGH in D₂O

Figure S3. GPC trace of PGH in water at 40°C

Figure S4. Photographs of PGH (A) and PGH@AgNPs dispersed in aqueous solution