Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Electronic Supplementary Information (ESI)

Zwitterionic dioxidovanadium(v) complexes containing fluorinated triphenylphosphonium ligands: Structure and biomacromolecules studies

Francisco Mainardi Martins,^a Daniele Cocco Durigon,^b Otávio Augusto Chaves,^d Rosely A. Peralta,^c Davi Fernando Back^a* and Hernán Terenzi^b*

^aLaboratory of Inorganic Materials, Department of Chemistry, CCNE, Federal University of Santa Maria, Santa Maria – RS – Brazil, 97105-900.

^bLaboratory of Structural Molecular Biology, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis – SC – Brazil, 88040-900.

^cLaboratory of Bioinorganic and Crystallography, Department of Chemistry, Federal University of Santa Catarina, Florianópolis – SC – Brazil, 88040-900.

^dCQC-IMS, Department of Chemistry, University of Coimbra, Coimbra – Portugal, 3004-535.

*Corresponding authors:

e-mail: davi.f.back@ufsm.br. (D. F. Back).

e-mail: hernan.terenzi@ufsc.br. (H. Terenzi).

Electronic Supplementary Information caption

S1 Synthesis procedures and spectroscopic data of 5-(chloromethyl)-2-	3
hydroxybenzaldehyde, [AF]Cl, [H ₂ L1]Cl–[H ₂ L3]Cl, and C1–C3	
Scheme S1 Synthesis of 5-(chloromethyl)-2-hydroxybenzaldehyde and [AF]Cl	4
Scheme S2 General synthesis of ligands [H ₂ L1]Cl–[H ₃ L3]Cl and complexes C1–C3	5
Tables	
Table S1 Crystal data and structure refinement for C1–C3	10
Table S2 Values of selected bond lengths (Å) of C1–C3 and dioxidovanadium(V) complexes from literature	11
Table S2 Values of colored hand angles $(^{\circ})$ of C1 C2 and diovidevanadium(V) complexes	10
from literature	12
Table 64 The 9 and a angles (*) calculated qualities (dimensionless) and accordination	10
Table 54 The B and α angles (), calculated t values (dimensionless), and coordination	13
geometries of C1–C3 and dioxidovanadium(V) complexes from literature	
Table S5 Molecular docking results for the interaction between deoxyribonucleic acid	14
and C1–C3 in the minor groove	
Table S6 Molecular docking results for the interaction between bovine serum albumin	14
and C1–C3 in the site III	
Table S7 Molecular docking results for the interaction between human serum albumin	16
and C1–C3 in the site III	
Figures	
Figs. S1–S11 FT-IR and FT-Raman spectra of the compounds	18
Figs. S12–S41 ¹ H, ¹³ C, ¹⁹ F, ³¹ P, and ⁵¹ V-NMR spectra of the compounds	23
Figs. S42–S44 ESI-MS spectra of the complexes C1–C3	39
Figs. S45–S48 UV-Vis spectra of complexes C1–C3	40
Figs. S49–S61 Interaction and cleavage studies with DNA and BSA	43
Electronic Supplementary Information references	54

S1 Synthesis procedures and spectroscopic data of 5-(chloromethyl)-2hydroxybenzaldehyde, **[AF]Cl**, **[H₂L1]Cl–[H₃L3]Cl**, and **C1–C3**

S1.1 5-(chloromethyl)-2-hydroxybenzaldehyde

For this synthesis, an experimental procedure already published was used¹. In a 250 mL round bottom flask, 8 g of paraformaldehyde and 60 mL of hydrochloric acid were added. Under constant magnetic stirring, 150 mmol of salicylaldehyde (18.32 g; 15.65 mL) and a few drops of sulfuric acid were added. This reaction mixture was maintained under constant magnetic stirring and under heating in an oil bath at 50 °C for 48 hours (**Scheme S1**).

After, the solid formed was separated by filtration and the solid was washed with 200 mL of deionized water and the solid was solubilized with dichloromethane. After filtration and evaporation of the solvent at room temperature, a light beige solid was obtained. The purity of the compound was sufficient to proceed to the following reactions.

(23.30 g, 91.1 %). mp 79 °C (from MeCN/CH₂Cl₂). v_{max}/cm^{-1} (FT-IR) 3209br (OH), 3069w (C–H)_{aromatic}, 2966w (C–H)_{aliphatic}, and 1650s (C=O). v_{max}/cm^{-1} (FT-Raman) 3071w (C–H)_{aromatic}, 2967w (C–H)_{aliphatic}, and 1651s (C=O). δ_{H} (600 MHz; CDCl₃; Me₄Si) 4.58 (2 H, s, CH₂), 6.97, 6.98 (1 H, d, CH_{aromatic}), 7.53–7.55 (1 H, m, CH_{aromatic}), 7.57, 7.57 (1 H, d, CH_{aromatic}), 9.87 (1 H, s, CH_{aldehyde}), and 11.05 (1 H, s, OH). δ_{C} (151 MHz; CDCl₃; Me₄Si) 45.24, 118.28, 120.33, 129.21, 133.64, 137.31, and 161.57.

3

S1.2 (3-formyl-4-hydroxybenzyl)tris(4-fluorophenyl)phosphonium chloride ([AF]Cl)

For this synthesis, an experimental procedure already published was used, but using tris(4-fluorophenyl)phosphine¹. This reaction was carried out in a system under an inert atmosphere of argon. In a 100 mL round bottom flask, 2.00 mmol of 5- (chloromethyl)-2-hydroxybenzaldehyde (0.340 g) was dissolved in 10 mL of toluene. Under magnetic stirring and heating in an oil bath at 80 °C, 2.20 mmol of tris(4-fluorophenyl)phosphine (0.696 g) dissolved in 20 mL of toluene was added via a dropping funnel. The reaction system was heated to 100 °C and the conditions of temperature, stirring and inert atmosphere were maintained for 6 hours (**Scheme S1**). After, a greenish yellow solid was separated by filtration and purified by washing with 30 mL of hot toluene and 5 mL of diethyl ether and dried at open atmosphere.

i = Hydrochloric acid, paraformaldehyde, sulfuric acid, 50°C, 48 hours
ii = Argon, toluene, tris(4-fluorophenyl)phosphine, 100°C, 6 hours

(0.853 g, 87.6 %). mp 212 °C. v_{max}/cm⁻¹ (FT-IR) 3043w (C–H)_{aromatic}, 2977w (C–H)_{aliphatic}, and 1674s (C=O). δ_{H} (600 MHz; DMSO- d_{6}) 5.21, 5.24 (2 H, d, CH₂), 7.07–7.10 (1 H, m, CH_{aromatic}), 7.13–7.14 (1 H, m, CH_{aromatic}), 7.16–7.17 (1 H, m, CH_{aromatic}), 7.62–7.65 (6 H, m, CH_{aromatic}), 7.78–7.82 (6 H, m, CH_{aromatic}), 10.17 (1 H, s, CH_{aldehyde}), and 11.34 (1 H, s, OH). δ_{C} (151 MHz; DMSO- d_{6}) 27.56, 27.87, 113.47, 113.49, 114.06, 114.09, 117.53, 117.57, 117.62, 117.65, 117.74, 117.80, 117.89, 118.20, 118.22, 122.52, 122.54, 130.22, 130.26, 137.39, 137.46, 137.53, 137.94, 137.97, 161.07, 161.08, 165.24, 165.27, 166.94, 166.96, and 189,36. δ^{19}_{F} (565 MHz; DMSO- d_{6}) -101.91. δ^{31}_{P} (243 MHz; DMSO- d_{6} ; PPh₃) 21.39.

S1.3 Synthesis and spectroscopic data of the ligands [H₂L1]Cl-[H₃L3]Cl

In a 50 mL round bottom flask, 0.30 mmol of (3-formyl-4-hydroxybenzyl)tris(4-fluorophenyl)phosphonium chloride (**[AF]Cl**, 0.146 g) and 0.30 mmol of the respective hydrazide (**[H₂L1]Cl**: nicotinic, 0.041 g; **[H₂L2]Cl**: isonicotinic, 0.041 g, and **[H₃L3]Cl**: 3-hydroxy-2-naphthoic, 0.061 g) were solubilized in 20 mL of ethanol. The mixture was maintained under constant magnetic stirring and heating in an oil bath at 90°C for 6 hours (**Scheme S2**).

After, the resulting yellow mixture was added to small vials. After evaporation of ethanol, the ligands were purified by silica gel column chromatography with a mixture (v/v) 85:15 ([H₂L1]Cl) or 90:10 ([H₂L2]Cl and [H₃L3]Cl) dichloromethane/methanol as eluent. [H₂L1]Cl and [H₂L2]Cl were washed with 5 mL of diethyl ether and 2 mL of deionized water, while [H₃L3]Cl was washed only with with 5 mL of diethyl ether. The compounds were dried at 50 °C for 24 hours.

Scheme S2 General synthesis of ligands [H₂L1]Cl-[H₃L3]Cl and complexes C1-C3.

S1.3.1 Ligand {(*E*)-{4-hydroxy-3-[(2-nicotinoylhydrazono)methyl]benzyl}tris(4fluorophenyl)phosphonium chloride (**[H₂L1]Cl**)

(0.102 g, 56.1 % after purification). mp 172 °C. v_{max}/cm^{-1} (FT-IR) 3389br (O–H), 3030w (C–H)_{aromatic}, 2970w (C–H)_{aliphatic}, 1665s (C=O), and 1625w (C=N). δ_H(600 MHz; DMSO-*d*₆) 5.17, 5.20 (2 H, d, CH₂), 6.89 (2 H, s, CH_{aromatic}), 7.28 (1 H, s, CH_{aromatic}), 7.57– 7.61 (2 H, m, CH_{aromatic}), 7.63–7.65 (6 H, t, CH_{aromatic}), 7.77–7.81 (6 H, m, CH_{aromatic}), 8.38, 8.39 (1 H, d, CH_{aromatic}), 8.69 (1 H, s, N=CH), 9.18 (1 H, s, CH_{aromatic}), 11.32 (1 H, s, OH), and 12.66 (1 H, s, NH). δ_c(151 MHz; DMSO-*d*₆) 27.80, 28.11, 113.61, 113.62, 114.20, 114.22, 117.10, 117.12, 117.71, 117.80, 117.86, 117.95, 119.55, 119.57, 131.02, 131.05, 133.34, 133.37, 135.56, 137.39, 137.46, 137.53, 146.80, 148.87, 152.45, 157.35, 157.37, 161.38, 165.27, 165.29, 166.97, and 166.99. δ^{19}_{F} (565 MHz; DMSO-*d*₆; PhCF₃) -101.83. δ^{31}_{P} (243 MHz; DMSO-*d*₆; PPh₃) 21.14.

S1.3.2 Ligand {(*E*)-{4-hydroxy-3-[(2-isonicotinoylhydrazono)methyl]benzyl}tris(4-fluorophenyl)phosphonium chloride (**[H**₂L2]Cl)

 $(0.075 \text{ g}, 41.3 \% \text{ after purification}). \text{ mp } 182 \ ^{\circ}\text{C} (decomposition}). v_{max}/cm^{-1} (FT-IR)$ 3399br (O–H), 3033w (C–H)_{aromatic}, 2956w (C–H)_{aliphatic}, 1668s (C=O), and 1625w (C=N). $\delta_{\text{H}}(600 \text{ MHz}; \text{CDCl}_3) 5.36 (2 \text{ H}, \text{ s}, \text{CH}_2), 6.50, 6.51 (1 \text{ H}, \text{ d}, \text{CH}_{aromatic}), 6.78 (1 \text{ H}, \text{ s}, \text{CH}_{aromatic}), 6.91, 6.96 (1 \text{ H}, \text{ m}, \text{CH}_{aromatic}), 7.25–7.27 (6 \text{ H}, \text{ t}, \text{CH}_{aromatic}), 7.70 (6 \text{ H}, \text{ s}, \text{CH}_{aromatic}), 8.12 (2 \text{ H}, \text{ s}, \text{CH}_{aromatic}), 8.67 (2 \text{ H}, \text{ s}, \text{CH}_{aromatic}), 8.82 (1 \text{ H}, \text{ s}, \text{N=CH}), 11.70 (1 \text{ H}, \text{ s}, \text{OH}), \text{ and } 13.27 (1 \text{ H}, \text{ s}, \text{NH}). \delta_{\text{C}}(151 \text{ MHz}; \text{CDCl}_3) 29.67, 29.98, 112.91, 113.50, 113.52, 116.70, 116.76, 117.51, 118.04, 118.13, 118.18, 118.27, 118.45, 122.14, 133.50, 137.06, 137.13, 137.20, 139.23, 150.28, 158.70, 161.91, 165.85, 165.88, \text{and } 167.60. \\ \delta^{19}_{\text{F}}(565 \text{ MHz}; \text{CDCl}_3; \text{PhCF}_3) -98.80, -98.95, \text{ and } -99.00. \\ \delta^{31}_{\text{P}}(243 \text{ MHz}; \text{CDCl}_3; \text{Ph}_3) 20.74.$ S1.3.3 Ligand {(*E*)-{4-hydroxy-3-{[2-(3-hydroxy-2-

naphthoyl)hydrazono]methyl}benzyl}tris(4-fluorophenyl)phosphonium chloride ([H₃L3]Cl)

(0.037 g, 18.4 % after purification). mp 230 °C (decomposition). v_{max}/cm⁻¹ (FT-IR) 3031w (C–H)_{aromatic}, 2974w (C–H)_{aliphatic}, 1657s (C=O), and 1624m (C=N). δ_{H} (600 MHz; DMSO-*d*₆) 5.13, 5.15 (2 H, d, CH₂), 6.86–6.89 (2 H, t, CH_{aromatic}), 7.24 (1 H, s, CH_{aromatic}), 7.31–7.35 (2 H, t, CH_{aromatic}), 7.48–7.51 (1 H, t, CH_{aromatic}), 7.63–7.66 (6 H, m, CH_{aromatic}), 7.71–7.74 (1 H, m, CH_{aromatic}), 7.76–7.80 (6 H, m, CH_{aromatic}), 7.87–7.89 (1 H, t, CH_{aromatic}), 8.55 (1 H, s, CH_{aromatic}), 8.55 (1 H, s, N=CH), and 11.56 (1 H, s, OH). δ_{c} (151 MHz; DMSO-*d*₆) 27.81, 28.12, 110.51, 110.56, 110.58, 113.60, 113.62, 114.19, 114.21, 117.11, 117.58, 117.63, 117.73, 117.82, 117.88, 117.97, 119.70, 119.72, 120.04, 123.58, 123.60, 123.67, 125.78, 126.65, 128.18, 128.70, 130.06, 130.28, 130.95, 130.98, 133.27, 135.98, 137.28, 137.38, 137.45, 137.52, 146.60, 149.69, 154.87, 157.52, 164.34, 165.29, 165.31, 166.99, and 167.01. δ^{19}_{F} (565 MHz; DMSO-*d*₆; PhCF₃) -101,82. δ^{31}_{P} (243 MHz; DMSO-*d*₆; PPh₃) 21.05.

S1.4 Synthesis of the complexes C1–C3

The complexes were synthesized through one-pot in situ (template) reactions. In a 50 mL round bottom flask, 0.20 mmol of (3-formyl-4-hydroxybenzyl)tris(4fluorophenyl)tris(4-fluorophenyl) chloride (**[AF]Cl**, 0.097 g) and 0.20 mmol of the respective hydrazide (**C1**: nicotinic, 0.027 g; **C2**: isonicotinic, 0.027 g, and **C3**: 3-hydroxy-2-naphthoic, 0.041 g) were solubilized in 10 mL (**C1**, **C2**) or 20 mL (**C3**) of methanol. The solution was maintained under constant magnetic stirring and heating in an oil bath at 70°C for 30 minutes. After this, 0.20 mmol of tris(acetylacetonate)vanadium(III) (V(acac)₃, 0.070 g) was added at 70°C. Then, 0.40 mmol of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU, 0.060 g, 60 µL) was added to the reaction. The reaction system was maintained under the same stirring and heating conditions at 70°C for more 2 hours (**Scheme S2**). The precipitation of **C3** was noted during the reaction. The resulting brown mixture was filtered to remove any residual precipitate and the supernatant was added to small vials for air oxidation and slow evaporation of the solvent at room temperature. The obtained single crystals suitable for X-ray diffraction were separated, washed with hot methanol (10 mL) and dried at 50°C for 24 hours.

S1.4.1 Complex [VO₂(L1)]·H₂O (C1)

(Crystalline material: 0.050 g, 37.3 %). mp 204 °C (decomposition, from MeOH). (Found: C, 57.40; H, 3.60; N, 6.24. Calc. for C₃₂H₂₂F₃N₃O₄PV·H₂O: C, 57.41; H, 3.61; N, 6.28 %). v_{max}/cm^{-1} (FT-IR) 3542br (O–H)_{water}, 3038w (C–H)_{aromatic}, 2971w (C–H)_{aliphatic}, 1614m (C=N), 895s (V=O), and 828s (V=O). v_{max}/cm^{-1} (FT-Raman) 1618w (C=N). δ_{H} (600 MHz; DMSO-*d*₆) 5.08, 5.10 (2 H, d, CH₂), 6.65, 6.67 (1 H, d, CH_{aromatic}), 6.84, 6.86 (1 H, d, CH_{aromatic}), 7.19 (1 H, s, CH_{aromatic}), 7.48–7.50 (1 H, m, CH_{aromatic}), 7.63–7.66 (6 H, m, CH_{aromatic}), 7.78–7.82 (6 H, m, CH_{aromatic}), 8.25, 8.27 (1 H, d, CH_{aromatic}), 8.66, 8.67 (1 H, d, CH_{aromatic}), 8.79 (1 H, s, N=CH), and 9.12 (1 H, s, CH_{aromatic}). δ^{19}_{F} (565 MHz; DMSO-*d*₆; PhCF₃) -101.95. δ^{31}_{P} (243 MHz; DMSO-*d*₆; PPh₃) 20.39. δ^{51}_{V} (158 MHz; DMSO-*d*₆; VOCl₃/C₆D₆) -537.19. *m/z* (ESI-MS) 652.05 ([M+H]⁺, 100%). Calc. for C₃₂H₂₂F₃N₃O₄PV: 652.08.

S1.4.2 Complex [VO₂(L2)]·CH₃OH (C2)

(Crystalline material: 0.060 g, 43.9 %). mp 182 °C (decomposition, from MeOH). (Found: C, 56.49; H, 4.00; N, 5.98. Calc. for C₃₂H₂₂F₃N₃O₄PV·CH₃OH·H₂O: C, 56.50; H, 4.02; N, 5.99 %). v_{max} /cm⁻¹ (FT-IR) 3413br (O–H), 3052w (C–H)_{aromatic}, 2975w (C–H)_{aliphatic}, 1616m v(C=N), 922s (V=O), and 830s (V=O). v_{max} /cm⁻¹ (FT-Raman) 3073w (C–H)_{aromatic} and 1615w (C=N). δ_{H} (600 MHz; DMSO-*d*₆) 5.08, 5.10 (2 H, d, CH₂), 6.66, 6.68 (1 H, d, CH_{aromatic}), 6.86, 6.87 (1 H, d, CH_{aromatic}), 7.19 (1 H, s, CH_{aromatic}), 7.63–7.66 (6 H, m, CH_{aromatic}), 7.77–7.82 (6 H, m, CH_{aromatic}), 7.84, 7.85 (2 H, d, CH_{aromatic}), 8.68, 8.69 (2 H, d, CH_{aromatic}), and 8.81 (1 H, s, N=CH). δ_{19}^{19} (565 MHz; DMSO-*d*₆; PhCF₃) -101.93. δ_{31}^{31} P(243 MHz; DMSO-*d*₆; PPh₃) 20.41. δ_{51} v(158 MHz; DMSO-*d*₆; VOCl₃/C₆D₆) -536.69. *m/z* (ESI-MS) 652.03 ([M+H]⁺, 100%). Calc. for C₃₂H₂₂F₃N₃O₄PV: 652.08.

S1.4.3 Complex [VO₂(HL3)]·CH₃OH·H₂O (C3)

(Crystalline material: 0.030 g, 19.6 %). mp 212 °C (decomposition, from MeOH). (Found: C, 59.50; H, 4.03; N, 3.63. Calc. for C₃₇H₂₅F₃N₂O₅PV·CH₃OH·H₂O: C, 59.54; H, 4.08; N, 3.65 %). v_{max}/cm⁻¹ (FT-IR) 3505br (O–H)_{water}, 3060w (C–H)_{aromatic}, 2979w (C–H)_{aliphatic}, 1613m (C=N), 904s (V=O), and 831s (V=O). v_{max}/cm⁻¹ (FT-Raman) 3067w (C–H)_{aromatic} and 1618m (C=N). δ_{H} (600 MHz; DMSO-*d*₆) 5.10, 5.12 (2 H, d, CH₂), 6.69, 6.70 (1 H, d, CH_{aromatic}), 6.87, 6.88 (1 H, d, CH_{aromatic}), 7.23 (1 H, s, CH_{aromatic}), 7.30–7.33 (2 H, m, CH_{aromatic}), 7.47–7.49 (1 H, t, CH_{aromatic}), 7.63–7.66 (6 H, m, CH_{aromatic}), 7.74, 7.75 (1 H, d, CH_{aromatic}), 7.78–7.82 (6 H, m, CH_{aromatic}), 7.95, 7.96 (1 H, d, CH_{aromatic}), 8.49 (1 H, s, CH_{aromatic}), 8.96 (1 H, s, N=CH), and 12.00 (1 H, s, OH_{naphthoic}). δ^{19}_{F} (565 MHz; DMSO-*d*₆; PhCF₃) -101.89. δ^{31}_{P} (243 MHz; DMSO-*d*₆; PPh₃) 20.41. δ^{51}_{V} (158 MHz; DMSO-*d*₆; VOCl₃/C₆D₆) -538.71. *m/z* (ESI-MS) 717.08 ([M+H]⁺, 100%). Calc. for C₃₇H₂₅F₃N₂O₅PV : 717.09.

Tables

	C1	C2	С3
Empirical formula	$C_{32}H_{24}F_{3}N_{3}O_{5}PV$	$C_{66}H_{52}F_6N_6O_{10}P_2V_2$	$C_{38}H_{31}F_{3}N_{2}O_{7}PV$
Formula weight	669.45	1366.96	766.56
Temperature (K)	100(2)	100(2) 100(2)	
Wavelength (Å)	0.71073 (Μο–Κα)	0.71073 (Mo–Kα)	0.71073 (Μο–Κα)
Crystal system, space	Triclinic,	Triclinic,	Monoclinic,
group	ΡĪ	ΡĪ	P21/c
<i>a × b × c</i> (Å)	10.118(8) ×	14.696(4) ×	11.288(4) ×
	11.742(9) ×	14.852(4) ×	20.111(7) ×
	14.272(12)	16.796(4)	15.857(5)
$\alpha \times \beta \times \gamma$ (°)	69.73(3) ×	111.604(7) ×	90 ×
	72.48(3) ×	91.134(8) ×	105.698(10) ×
	73.77(3)	111.054(8)	90
Volume (ų)	1487(2)	3131.7(14)	3466(2)
Z, C. density (mg m ⁻³)	2, 1.495	2, 1.450	4, 1.469
Absorp. Coeffic. (mm ⁻¹)	0.453	0.432	0.403
F (000)	684	1400	1576
Crystal size (mm)	0.341 × 0.212 × 0.118	0.22 × 0.19 × 0.12	0.38 × 0.19 × 0.18
Theta range for data	2.08 to 27.99	1.92 to 26.91	2.03 to 24.84
collection (°)			
Limiting indices	-13 ≤ h ≤ 13,	-18 ≤ h ≤ 16,	-10 ≤ h ≤ 13,
	-15 ≤ k ≤ 15,	-18 ≤ k ≤ 18,	-19 ≤ k ≤ 19,
	-18 ≤ l ≤ 18	-21 ≤ ≤ 21	-15 ≤ ≤ 15
Reflections	44357/7172	43401/13490	25487/3144
collected/unique			
Completeness to theta	99.8 %	99.5 %	99.5 %
Absorption correction	Semi-empirical from	Semi-empirical from	Semi-empirical from
	equivalents	equivalents	equivalents
Max. and min. trans.	0.7456 and 0.7039	0.9700 and 0.9210	0.9211 and 0.85621
Refinement method	Full-matrix least-	Full-matrix least-	Full-matrix least-
	squares on F^2	squares on F ²	squares on F ²
Data/restraints/	7172/0/406	13490/0/833	3144/1/471
parameters			
Goodness-of-fit on <i>F</i> ²	0.991	1.008	1.250

Table S1 Crystal data and structure refinement for C1–C3

Indice R _{int}	0.0446	0.1111	0.0558
Final R indices R ₁ and	R1 = 0.0474,	R1 = 0.0951,	R1 = 0.0621,
$wR_2[I>2\sigma(I)]$	wR2 = 0.1295	wR2 = 0.1650	wR2 = 0.1644
R indices (all data)	R1 = 0.0623,	R1 = 0.1123,	R1 = 0.0742,
	wR2 = 0.1394	wR2 = 0.1034	wR2 = 0.1822
Largest diff. peak and hole (e.Å ⁻³)	0.340 and -0.530	0.506 and -0.421	0.567 and -0.400

Table S2 Values of selected bond lengths (Å) of **C1–C3** and dioxidovanadium(V) complexes from literature

	Bond length values (Å)					
Bond	C1	C2*	C3	Complex	Complex	Complex
				from	from	from
				literature ⁵ *	literature ⁵	literature ⁶
				(nicotinic	(isonicotinic	(3-hydroxy-
				hydrazide)	hydrazide)	2-naphthoic
						hydrazide)
V ^v –N(imine)	2.155(2)	2.138(5)/	2.145(5)	2.133(4)/	2.139(5)	2.1505(12)
		2.147(4)		2.165(4)		
V ^v –O	1.914(2)	1.907(4)/	1.898(5)	1.891(3)/	1.914(3)	1.9017(12)
(phenolate)		1.902(4)		1.915(3)		
V ^v –O	1.976(2)	1.981(4)/	1.973(5)	1.967(3)/	1.978(4)	1.9822(11)
(enolate)		1.982(4)		1.980(3)		
V ^v =O (oxido)	1.621(2),	1.609(4),	1.588(6),	1.599(4),	1.607(4),	1.6106(14),
	1.644(2)	1.612(4)/	1.595(6)	1.661(3)/	1.634(4)	1.6358(13)
		1.602(4),		1.601(4),		
		1.622(4)		1.660(3)		
N(imine)–	1.396(3)	1.413(6)/	1.395(8)	1.398(5)/	1.406(5)	1.3921(17)
N(amide)		1.396(6)		1.404(5)		
C–N(amide)	1.312(3)	1.294(7)/	1.295(9)	1.306(6)/	1.288(6)	1.3105(19)
		1.292(7)		1.304(6)		
C-	1.304(3)	1.288(6)/	1.296(8)	1.313(6)/	1.304(6)	1.3008(18)
O(enolate)		1.304(7)		1.288(6)		

* = Two independent units of the complex in the asymmetric unit.

Table S3 Values of selected bond angles (°) of C1–C3 and dioxidovanadium(V) complexes from
literature

	Bond angle values (°)					
Angle	C1 C2* C3 Complex Complex Com			Complex		
				from	from	from
				literature*5	literature ⁶	literature ⁶
				(nicotinic	(isonicotinic	(3-hydroxy-
				hydrazide)	hydrazide)	2-naphthoic
						hydrazide)
N(imine)–	81.86(9)	82.02(17)/	82.3(2)	81.75(15)/	82.35(15)	81.79(5)
V ^v –O		82.42(16)		82.30(14)		
(phenolate)						
N(imine)–	74.0(10)	73.59(17)/	73.1(2)	74.20(14)/	73.68(15)	73.53(4)
V ^v –O		73.57(16)		73.73(13)		
(enolate)						
N(imine)–	104.64(10),	124.5(2),	119.5(4),	103.52(17),	113.49(18),	112.22(7),
V ^v =O(oxido)	145.77(11)	125.6(2)/	129.8(3)	149.08(18)/	137.27(18)	136.99(7)
		114.3(2),		97.27(18),		
		136.2(2)		156.79(17)		
0	147.59(8)	155.46(17)/	154.9(2)	146.58(16)/	153.37(17)	151.65(5)
(phenolate)–		153.50(18)		150.05(14)		
V ^v –O						
(enolate)						
O(oxido)=	95.27(12),	98.0(2) <i>,</i>	97.5(3) <i>,</i>	95.27(16),	97.09(16),	96.32(6),
V ^v –O	105.63(10)	100.6(2)/	98.8(3)	105.19(18)/	101.82(19)	100.97(7)
(phenolate)		96.0(2),		98.09(16),		
		101.4(2)		101.72(18)		
O(oxido)=	92.79(11),	94.1(2),	94.7(3),	93.74(15),	92.86(17),	92.43(5),
V ^v –O	101.26(10)	95.48(19)/	97.4(3)	102.78(16)/	98.31(19)	101.14(6)
(enolate)		93.7(2),		97.10(15),		
		98.6(2)		98.93(16)		
O(oxido)= V ^v	108.93(13)	109.1(2)/	110.2(5)	106.93(19)/	108.5(2)	110.31(9)
=O(oxido)		108.9(2)		105.30(19)		
C-	108.05(18)	108.3(5)/	108.3(6)	108.2(4)/	107.9(4)	109.2(1)
N(amide)–		109.0(5)		108.1(4)		
N(imine)						

* = Two independent units of the complex in the asymmetric unit.

Table S4 The β and α angles (°), calculated τ values (dimensionless), and coordination geometries of **C1–C3** and dioxidovanadium(V) complexes from literature

Complex	β (°)ª	α (°) ^b	$ au^{c}$	Coordination geometry
C1	147.59(8)	145.77(11)	0.03	Slightly distorted square based
				pyramid
C2*	155.46(17)/	125.6(2)/	0.50/	Distorted between square based
	153.50(18)	136.2(2)	0.29	pyramid and trigonal bipyramid/
				distorted square based pyramid
C3	154.9(2)	129.8(3)	0.42	Distorted between square based
				pyramid and trigonal bipyramid
Complex from	149.08(18)/	146.58(16)/	0.04/	Slightly distorted square based
literature*5	156.79(17)	150.05(14)	0.11	pyramid/slightly distorted square
(nicotinic hydrazide)				based pyramid
Complex from	153.37(17)	137.27(18)	0.26	Distorted square based pyramid
literature ⁶				
(isonicotinic hydrazide)				
Complex from	151.65(5)	136.99(7)	0.24	Distorted square based pyramid
literature ⁶				
(3-hydroxy-2-				
naphthoic hydrazide)				

a = Highest bond angle value; b = Second highest bond angle value; c = Structural index parameter τ (dimensionless) calculated⁷ as $\tau = (\beta - \alpha)/60$; * = Two independent units of the complex in the asymmetric unit.

System	Nucleobase	Interaction	Distance (Å)
-	DA-05	Van der Waals	4.00
	DA-06	Van der Waals	3.50
DNA: C1	DT-07	Van der Waals	3.20
	DA-18	Van der Waals	3.90
	DT-19	Van der Waals	3.10
	DT-20	Van der Waals	3.90
	DG-04	Van der Waals	3.30
	DA-05	Van der Waals	4.00
DNA: C2	DA-06	Van der Waals	4.10
	DT-20	Van der Waals	4.00
	DG-22	Van der Waals	4.00
	DA-05	Van der Waals	4.00
	DA-06	Van der Waals	3.30
DNA: C3	DT-07	Van der Waals	2.30
	DA-18	Van der Waals	3.00
	DT-19	Van der Waals	2.30
	DT-20	Van der Waals	3.30

Table S5 Molecular docking results for the interaction between deoxyribonucleic acid and C1–**C3** in the minor groove

DA, adenine; DT, thymidine; DG, guanine.

Table S6 Molecular docking results for the interaction between bovine serum albumin and C1–**C3** in the site III

System	Amino acid residue	Interaction	Distance (Å)
-	Leu-116	Hydrophobic	3.57
	Pro-118	Hydrophobic	3.91
	Leu-123	Hydrophobic	3.35
	Glu-126	Hydrophobic	3.43
	Phe-134	Hydrophobic	3.27
	Lys-137	Hydrophobic	3.40
BSA: C1	Lys-137	π-cation	3.55
	Tyr-138	Hydrogen bond	2.09
	Tyr-138	Hydrophobic	3.56

	Glu-141	Hydrophobic	3.35
	Tyr-161	Hydrogen bond	2.09
	Tyr-161	π -stacking	5.29
	lle-182	Hydrophobic	3.50
	Met-185	Hydrophobic	3.91
	Arg-186	Hydrogen bond	2.96
	Arg-186	Hydrophobic	3.67
	Pro-118	Hydrophobic	3.74
	Leu-123	Hydrophobic	3.44
	Glu-126	Hydrophobic	3.70
	Phe-134	Hydrophobic	3.31
	Lys-137	π-cation	3.53
BSA: C2	Lys-137	Hydrophobic	3.46
	Tyr-138	Hydrogen bond	2.63
	Tyr-138	Hydrophobic	3.21
	Glu-141	Hydrophobic	3.13
	lle-142	Hydrophobic	3.81
	Tyr-161	Hydrogen bond	2.19
	Tyr-161	Hydrophobic	3.53
	lle-182	Hydrophobic	3.41
	Leu-116	Hydrophobic	3.40
	Pro-118	Hydrophobic	3.39
	Leu-123	Hydrophobic	2.71
	Phe-134	Hydrophobic	3.55
	Lys-137	Hydrophobic	3.26
	Lys-137	π-cation	3.33
BSA: C3	Tyr-138	Hydrophobic	3.48
	Tyr-161	Hydrogen bond	1.67
	Glu-183	Hydrogen bond	3.30
	Arg-186	π-cation	3.58

Leu, leucine; Pro, proline; Val, valine; Arg, arginine; Tyr, tirosine; Glu, glutamic acid; Ile, Isoleucine; Phe, phenylalanine; Lys, lysine; Met, methionine.

System	Amino acid residue	Interaction	Distance (Å)
	Leu-115	Hydrophobic	3.37
	Arg-117	Hydrophobic	3.36
	Arg-117	Hydrogen bond	3.13
	Phe-134	Hydrophobic	3.73
	Lys-137	Hydrophobic	3.35
HSA: C1	Tyr-138	Hydrophobic	3.51
	Glu-141	Hydrophobic	3.45
	lle-142	Hydrophobic	3.58
	Tyr-161	Hydrogen bond	2.70
	Leu-182	Hydrophobic	3.75
	Arg-186	Hydrophobic	3.73
	Leu-115	Hydrophobic	3.38
	Arg-117	Hydrophobic	3.40
	Arg-117	Hydrogen bond	2.99
	Phe-134	Hydrophobic	3.47
HSA: C2	Lys-137	Hydrophobic	3.29
	Tyr-138	Hydrophobic	3.35
	Glu-141	Hydrophobic	3.36
	Leu-182	Hydrophobic	3.95
	Arg-186	Hydrogen bond	3.22
	Leu-115	Hydrophobic	3.31
	Arg-117	Hydrophobic	3.58
	Arg-117	Hydrogen bond	3.06
	Phe-134	Hydrophobic	3.74
	Lys-137	Hydrophobic	3.29
	Tyr-138	Hydrophobic	3.53
HSA: C3	Tyr-138	Hydrogen bond	1.82
	Glu-141	Hydrophobic	3.81
	lle-142	Hydrophobic	3.56
	Tyr-161	π stacking	4.98
	Leu-182	Hydrophobic	3.32

Table S7 Molecular docking results for the interaction between human serum albumin and C1–**C3** in the site III

Leu-185	Hydrogen bond	3.15
Arg-186	Hydrophobic	3.75
Lys-190	Hydrophobic	3.33

Leu, leucine; Val, valine; Arg, arginine; Tyr, tirosine; Glu, glutamic acid; Ile, Isoleucine; Phe, phenylalanine; Lys, lysine; Ala, alanine; Asn, asparagine; Thr, threonine.

Figures

Fig. S1 FT-IR spectrum of 5-(chloromethyl)-2-hydroxybenzaldehyde (ATR).

Fig. S2 FT-IR spectrum of [AF]CI (ATR).

Fig. S3 FT-IR spectrum of [H₂L1]Cl (ATR).

Fig. S4 FT-IR spectrum of [H₂L2]Cl (ATR).

Fig. S5 FT-IR spectrum of [H₃L3]Cl (ATR).

Fig. S6 FT-IR spectrum of [VO₂L1]·H₂O (C1) (ATR).

Fig. S7 FT-Raman spectrum of $[VO_2L1]$ ·H₂O (C1) (785 nm, 25 mW, 6 coadditions of 10 s).

Fig. S8 FT-IR spectrum of [VO₂L2]·CH₃OH (C2) (ATR).

Fig. S9 FT-Raman spectrum of [VO₂L2]·CH₃OH (C2) (785 nm, 25 mW, 6 coadditions of 10 s).

Fig. S10 FT-IR spectrum of [VO₂HL3]·CH₃OH·H₂O (C3) (ATR).

Fig. S11 FT-Raman spectrum of [VO₂HL3]·CH₃OH·H₂O (**C3**) (785 nm, 25 mW, 6 coadditions of 10 s).

Fig. S12 ¹H-NMR spectra of 5-(chloromethyl)-2-hydroxybenzaldehyde (600 MHz, CDCl₃).

Fig. S13 ¹³C-NMR spectra of 5-(chloromethyl)-2-hydroxybenzaldehyde (151 MHz, CDCl₃).

Fig. S14 ¹H-NMR spectra of [AF]Cl (600 MHz, DMSO-d₆).

Fig. S15 ¹³C-NMR spectra of [AF]Cl (151 MHz, DMSO- d_6).

Fig. S16¹⁹F-NMR spectra of **[AF]CI** (565 MHz, DMSO-*d*₆).

Fig. S17 ³¹P-NMR spectra of [AF]Cl (243 MHz, DMSO-d₆).

Fig. S18 ¹H-NMR spectra of $[H_2L1]CI$ (600 MHz, DMSO- d_6).

Fig. S19¹³C-NMR spectra of **[H₂L1]Cl** (151 MHz, DMSO-*d*₆).

Fig. S20¹⁹F-NMR spectra of **[H**₂**L1]Cl** (565 MHz, DMSO-*d*₆).

Fig. S21 ³¹P-NMR spectra of **[H₂L1]Cl** (243 MHz, DMSO-*d*₆).

Fig. S22 ¹H-NMR spectra of [H₂L2]Cl (600 MHz, CDCl₃).

Fig. S23 $^{\rm 13}\text{C-NMR}$ spectra of [H_2L2]Cl (151 MHz, CDCl_3).

Fig. S24 ¹⁹F-NMR spectra of **[H₂L2]Cl** (565 MHz, CDCl₃).

Fig. S25 ³¹P-NMR spectra of [H₂L2]Cl (243 MHz, CDCl₃).

Fig. S26 ¹H-NMR spectra of $[H_3L3]CI$ (600 MHz, DMSO- d_6).

Fig. S27 ¹³C-NMR spectra of [H₃L3]Cl (151 MHz, DMSO-d₆).

Fig. S28¹⁹F-NMR spectra of **[H**₃**L3]Cl** (565 MHz, DMSO-*d*₆).

Fig. S29 ³¹P-NMR spectra of **[H**₃**L3]Cl** (243 MHz, DMSO-*d*₆).

Fig. S30 ¹H-NMR spectra of $[VO_2L1] \cdot H_2O$ (**C1**) (600 MHz, DMSO-*d*₆).

Fig. S31 ¹⁹F-NMR spectra of [VO₂L1]·H₂O (**C1**) (565 MHz, DMSO-*d*₆).

Fig. S32 ³¹P-NMR spectra of [VO₂L1]·H₂O (C1) (243 MHz, DMSO-*d*₆).

Fig. S33 ⁵¹V-NMR spectra of [VO₂L1]·H₂O (C1) (158 MHz, DMSO-d₆).

Fig. S34 ¹H-NMR spectra of [VO₂L2]·CH₃OH (C2) (600 MHz, DMSO-d₆)

Fig. S35 ¹⁹F-NMR spectra of [VO₂L2]·CH₃OH (**C2**) (565 MHz, DMSO-*d*₆).

Fig. S36³¹P-NMR spectra of [VO₂L2]·CH₃OH (C2) (243 MHz, DMSO-*d*₆)

Fig. S37 ⁵¹V-NMR spectra of [VO₂L2]·CH₃OH (**C2**) (158 MHz, DMSO-*d*₆).

Fig. S38 ¹H-NMR spectra of [VO₂HL3]·CH₃OH·H₂O (**C3**) (600 MHz, DMSO-*d*₆).

Fig. S39 ¹⁹F-NMR spectra of [VO₂HL3]·CH₃OH·H₂O (**C3**) (565 MHz, DMSO-*d*₆).

Fig. S40 ³¹P-NMR spectra of [VO₂HL3]·CH₃OH·H₂O (**C3**) (243 MHz, DMSO-*d*₆).

Fig. S41 ⁵¹V-NMR spectra of [VO₂HL3]·CH₃OH·H₂O (**C3**) (158 MHz, DMSO-*d*₆).

Fig. S42 ESI-MS spectrum (positive mode) in acetonitrile of complex C1.

Fig. S43 ESI-MS spectrum (positive mode) in acetonitrile of complex C2.

Fig. S44 ESI-MS spectrum (positive mode) in acetonitrile of complex C3.

Fig. S45 UV-Vis spectra of complexes C1-C3 in *N*,*N*-Dimethylformamide (DMF) solution ([C]= 3×10^{-5} M).

Fig. S46 UV-vis spectra for **C1** (3 × 10⁻⁵ M) in DMF/buffer (TRIS 0.5 mM) 5% v/v; pH 7.40, I = 0.5 mM (NaCl); 25 °C, over 24 h.

Fig. S47 UV-vis spectra for **C2** (3 × 10⁻⁵ M) in DMF/buffer (TRIS 0.5 mM) 5% v/v; pH 7.40, I = 0.5 mM (NaCl); 25 °C, over 24 h.

Fig. S48 UV-vis spectra for **C3** (3 × 10⁻⁵ M) in DMF/buffer (TRIS 0.5 mM) 5% v/v; pH 7.40, I = 0.5 mM (NaCl); 25 °C, over 24 h.

Fig. S49 pH effect on plasmid DNA cleavage with complex **C1**. Experimental conditions: [DNA] = 330 ng, ~25 μ M; [Buffer] = 10 mM, MES (6.0); HEPES (pH 7.0); HEPES (8.0); CHES (9.00); Complexes concentration = 500 μ M; Temperature = 50 °C; Incubation time = 8 hours sheltered from light.

Fig. S50 pH effect on plasmid DNA cleavage with complex **C2**. Experimental conditions: [DNA] = 330 ng, ~25 μ M; [Buffer] = 10 mM, MES (6.0); HEPES (pH 7.0); HEPES (8.0); CHES (9.00); Complexes concentration = 500 μ M; Temperature = 50 °C; Incubation time = 8 hours sheltered from light.

Fig. S51 pH effect on plasmid DNA cleavage with complex **C3**. Experimental conditions: [DNA] = 330 ng, ~25 μ M; [Buffer] = 10 mM, MES (6.0); HEPES (pH 7.0); HEPES (8.0); CHES (9.00); Complexes concentration = 500 μ M; Temperature = 50 °C; Incubation time = 8 hours sheltered from light.

Fig. S52 Complex **C1** concentration effect on plasmid DNA cleavage. Experimental conditions: [DNA] = 330 ng, ~25 μ M; [Buffer] = 10 mM, HEPES (pH 7.0); Complex concentration = 500 - 0 μ M; Temperature = 50 °C; Incubation time = 8 hours sheltered from light.

Fig. S53 Complex **C2** concentration effect on plasmid DNA cleavage. Experimental conditions: [DNA] = 330 ng, ~25 μ M; [Buffer] = 10 mM, HEPES (pH 7.0); Complex concentration = 500 - 0 μ M; Temperature = 50 °C; Incubation time = 8 hours sheltered from light.

Fig. S54 Complex **C3** concentration effect on plasmid DNA cleavage. Experimental conditions: [DNA] = 330 ng, ~25 μ M; [Buffer] = 10 mM, HEPES (pH 7.0); Complex concentration = 500 - 0 μ M; Temperature = 50 °C; Incubation time = 8 hours sheltered from light.

Fig. S55 Inert atmosphere effect on plasmid DNA cleavage, for complex **C1–C3**. Experimental conditions: [DNA] = 330 ng, ~25 μ M; [Buffer] = 10 mM, HEPES (pH 7.0); Complex concentration = 500 mM; Temperature = 50 °C; Incubation time = 16 hours sheltered from light.

Fig. S56 Groove blockers effect on plasmid DNA cleavage, for complex **C1–C3**. Experimental conditions: [DNA] = 330 ng, ~25 μ M; [Buffer] = 10 mM, HEPES (pH 7.0); Complex concentration = 500 μ M; Temperature = 50 °C; Incubation time = 16 hours sheltered from light. [NET]=[MG]=[DAPI]= 50 μ M

Fig. S57 Ionic strength effect on plasmid DNA cleavage, for complex **C2**. Experimental conditions: [DNA] = 330 ng, ~25 μ M; [Buffer] = 10 mM, HEPES (pH 7.0); Complex concentration = 500 mM; Temperature = 50 °C; Incubation time = 16 hours sheltered from light.

Fig. S58 Ionic strength effect on plasmid DNA cleavage, for complex **C3**. Experimental conditions: [DNA] = 330 ng, ~25 μ M; [Buffer] = 10 mM, HEPES (pH 7.0); Complex concentration = 500 mM; Temperature = 50 °C; Incubation time = 16 hours sheltered from light.

Fig. S59 Absorption spectra of complex **C1** on titration of 0–80 μ M *ct*-DNA in DMF/buffer (TRIS 0.5 mM) 5% v/v; pH 7.40, *I* = 0.5 mM (NaCl); 25 °C. Arrows indicate the changes in absorbance with increasing concentration of CT-DNA.

Fig. S60 Absorption spectra of complex **C2** on titration of 0–80 μ M ct-DNA in DMF/buffer (TRIS 0.5 mM) 5% v/v; pH 7.40, *I* = 0.5 mM (NaCl); 25 °C. Arrows indicate the changes in absorbance with increasing concentration of CT-DNA.

Fig. S61 Fluorescence spectrum of BSA (2 μ M) quenched by complex **C2** in the concentration range of 0–20 μ M. Inset: the Stern–Volmer plot.

Electronic Supplementary Information references

- 1 F. M. Martins, B. A. Iglesias, O. A. Chaves, J. L. Gutknecht Da Silva, D. B. R. Leal and D. F. Back, *Dalton Trans.*, 2024, **53**, 8315.
- 2 N. Kosari and F. Khamesipour, BioMed Res. Int., 2022, 2022, 1.
- 3 R. S. Meinel, A. D. C. Almeida, P. H. F. Stroppa, N. Glanzmann, E. S. Coimbra and A. D. Da Silva, *Chem.-Biol. Interact.*, 2020, **315**, 108850.
- 4 C. Fernandes, P. Chrystal, A. Pereira, A. Colli, L. Stenico, A. Ribeiro, I. Squarisi, A. Candido, D. Tavares, L. Magalhães, A. Crotti, C. Martins and M. Miranda, *Quím. Nova*, 2021, **44**, 570.
- 5 S. D. Kurbah, M. Asthana, I. Syiemlieh, A. A. Lywait, M. Longchar and R. A. Lal, *J. Organomet. Chem.*, 2018, **876**, 10.
- 6 M. Mohanty, S. K. Maurya, A. Banerjee, S. A. Patra, M. R. Maurya, A. Crochet, K. Brzezinski and R. Dinda, *New J. Chem.*, 2019, **43**, 17680.
- 7 A. W. Addison, T. N. Rao, J. Reedijk, J. Van Rijn and G. C. Verschoor, *J. Chem. Soc., Dalton Trans.*, 1984, 1349.