Supplementary Information

Observation of Griffith's phase-like magnetic behavior in a frustrated antiferromagnetic system: Sr₂InRuO₆

Sumanta Mukherjee^a

^a Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India

Figure S1: *Fig.* S1 (a) shows the X-ray diffraction (*XRD*) patterns of sample 1 (synthesized at 1250 °C) and sample 2 (synthesized at 1050-1150 °C, see manuscript). *XRD* patterns of both samples match well with the standard *XRD* pattern of Sr_2YRuO_6 and suggest the synthesis of the desired materials. Further, the impurity peak (shown by the star mark in *Fig.* S1 inset) has diminished in the sample synthesized at lower temperatures. This further suggests that the minute (3% - 5%) nonmagnetic impurity peak of *h*-In₂O₃ is resulting from the Ru sublimation at higher temperatures. *Fig.* S1 (b) and (c) show the simulated *XRD* patterns, using the standard *XRD* data of Sr_2YRuO_6 (ICSD collection code 192766) along with the experimental *XRD* patterns of sample 1 and sample 2. FullProf software was used for the structural refinements. The obtained structural information, like space group, lattice parameters and atomic positions are tabulated in *Table* S1 and *Table* S2.

Fig. S1: (a) *XRD* patterns of sample 1 and sample 2 are shown. The inset shows an enlarge view of the nonmagnetic *h*-In₂O₃ impurity peak. The *XRD* patterns were aligned at the highest intensity peak position for a better comparison. (b) and (c) show the simulated diffraction patterns along with the experimental *XRD* patterns of sample 1 and sample 2, respectively.

Table S1: *Table* S1 provides the structural information, like lattice parameters, space group and goodness of fit obtained from the refinement of the *XRD* patterns of sample 1 and sample 2.

Sample	a (Å)	b (Å)	c (Å)	β (deg)	Space group	R _p	R _{wp}	χ²
Sample 1 (1250°C)	5.6654 (±0.0011)	5.6746 (±0.0009)	8.0172 (±0.0024)	90.0813 (±0.1626)	P 2 ₁ /n	4.33	7.61	4.23
Sample 2 (1150°C)	5.6729 (±0.0010)	5.6729 5.6774 8.0129 90.0478 P 2 ₁ / (±0.0010) (±0.0009) (±0.0012) (±0.0192)	P 2 ₁ /n	2.36	4.02	2.78		
						Conventional		
						14.6	11.7	2.783

Table S2: *Table* S2 provides the atomic positions obtained from the refinement of the XRD patterns of the synthesized samples.

Atomic Coordinates								
Atom	Х	у	Z					
Sr	0.00282	0.00778	0.24385					
In	0.50000	0.00000	0.00000					
Ru	0.50000	0.00000	0.50000					
01	0.35310	0.30045	-0.03100					
O2	0.23153	0.78701	0.00011					
O3	0.01450	0.47661	0.24959					

Figure S2: A characteristic of the formation of Griffith's phase (*GP*) in certain systems is the power law variation of inverse susceptibility, χ^{-1} , given by an equation of the form $\chi^{-1} = (T - T_c^{rand})^{1-\lambda_G}$, where $0 \le \lambda_G < 1^{1,2,3}$. To estimate the value of the exponent λ_G , both Curie-Weiss temperature (θ_{cw}) and transition temperature (T_N or T_C) have previously been used for T_c^{rand} . However, for antiferromagnetic systems¹, a better choice for T_c^{rand} is a value close to θ_{cw} , which makes λ_G approximately zero in the paramagnetic phase. We have used a T_c^{rand} value of ≈ -257 K, which is very close to the $\theta_{cw}(\approx -265$ K) of Sr₂InRuO₆ obtained from the Curie-Weiss fitting of the inverse susceptibility data shown in *Fig.* 3(d) of the main manuscript, to ensure λ_G to be nearly zero in the paramagnetic phase. A linear fit (*Fig.* S2) of the low

temperature region thus obtained the value of λ_G to be ~ 0.624. This estimated exponent is in close agreement with the values obtained for several *GP*-containing compounds^{1,2,3}.

Fig. S2: A log-log plot χ^{-1} vs $(T - T_c^{rand})$ is shown. Red line shows the linear fit. The extracted value of λ_G from the linear fit is provided.

Figure S3:

Fig. S3: (a) A schematic representation of the dielectric measurement setup. The Nyquist (Cole-Cole) plots (b) and (c), obtained from the measured complex impedance (Z^*) of the SIRO sample at 100 K and 150 K, respectively, are asymmetric. This suggests the presence of more than one R-C element in the circuit. The effects of dc-bias are clearly visible in these plots.

References:

1) Z. W. Ouyang, N. M. Xia, Y. Y. Wu, S. S. Sheng, J. Chen, Z. C. Xia, L. Li, and G. H. Rao, Short-range ferromagnetic correlations in the spin-chain compound Ca₃CoMnO₆, *Phys. Rev. B*, 2011, **84**, 054435.

2) W. Jiang, X. Z. Zhou, G. Williams, Y. Mukovskii, and K. Glazyrin, Griffiths phase and critical behavior in singlecrystal La_{0.7}Ba_{0.3}MnO₃: Phase diagram for La_{1-x}Ba_xMnO₃ (x \leq 0.33), *Phys. Rev. B*, 2008, 77, 064424.

3) S. Guo, D. P. Young, R. T. MacAluso, D. A. Browne, N. L. Henderson, J. Y. Chan, L. L. Henry, and J. F. Ditusa, Discovery of the Griffiths phase in the itinerant magnetic semiconductor Fe_{1-x}Co_xS₂, *Phys. Rev. Lett.*, 2008, **100**, 017209.