Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Electronic Supporting Information (ESI)

Construction of an advanced Co-doped V₂O₃ electrode material with significantly enhanced conductivity and structural stability for supercapacitors using asparagic acid-functionalized graphene quantum dot

Li Ruiyi,^a Yang Chen,^a Li Zaijun*^a and Gao Mingjie*^b

^a Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, School of Life Science and Health Engineering, Jiangnan University, Wuxi 214122, China.

^b Weifang People's Hospital, Shandong Second Medical University, Shandong 261041, China

1. Experimental

1.1. Electrochemical measurements

Cyclic voltammogram (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge/discharge curves of three-electrode testing system and flexible supercapacitor were measured on the CHI 660D electrochemical workstation. The potential amplitude of ± 5 mV and frequency of 0.01-10⁵ Hz were adopted in the EIS measurements.

For the three-electrode system, the specific capacitance (C_g , based on a single electrode) were calculated according to the equation (1):

$$C_g = \frac{It}{m\Delta V} \tag{1}$$

Where, C_g is the gravimetric capacitance (F g⁻¹), I is the current (A), m is the active mass on the electrode (g), ΔV is the potential range, and t is the discharging time.

For the symmetric supercapacitor, the specific capacitance (C_{g2}), energy density and power density were calculated according to the equations (2, 3 and 4):

$$C_{g2} = \frac{2It}{m\Delta V} \tag{2}$$

$$E_g = \frac{C_{g2} \Delta V^2}{8 \times 3600} \tag{3}$$

$$P_g = \frac{E_{g2} \times 3600}{t_{discharge}} \tag{4}$$

Where C_g is the gravimetric capacitance (F g⁻¹) of a single electrode in two-electrode cell. Furthermore, E_g (W h g⁻¹) and P_g (W g⁻¹) are the gravimetric energy density and gravimetric power density, respectively, based on the total active material in the cell. I is the current (A), m is the active mass of active material in a single electrode (g), ΔV is the potential range, and t is the discharging time.

2. Figures

Fig. s1 EPR spectra of V₂O₅ and Co-V₂O₃-GQD@BC

Fig. s2 The charge-discharge cures at the current density of 10 A g^{-1} for 1^{st} and 10001^{st} cycle measurements

Fig. s3 SEM image and XRD pattern of Co-V₂O₃-GQD@BC after 10000-cycle

3. Tables

Table s1 EIS parameters of different electrodes

Electrode	$R_{S}(\Omega)$	$R_{ct}(\Omega)$	Ci (F)	$Z_{w}(\Omega)$
V ₂ O ₃	6.084	133.9	1.04×10 ⁻⁴	0.002994
V ₂ O ₃ -GQD	5.619	14.1	9.388×10 ⁻⁵	0.04668
V ₂ O ₃ -GQD@BC	12.56	1.59	1.239×10 ⁻⁴	0.06678
Co-V ₂ O ₃ -GQD@BC	6.193	1.234	1.382×10 ⁻⁴	0.04463