Supplementary Information

Novel Eutectogels Derived from an Ionic-Liquid-Based Deep Eutectic Solvent as Electrolytes for Supercapacitors: Synthesis and Characterization

Arindam Dutta,^{a,b} Wade Millar,^b Debbie S. Silvester,^b and Tamal Banerjee^{a*}

^aDepartment of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.

^bSchool of Molecular and Life Sciences, Curtin University, Perth, Western Australia 6845, Australia.

*Corresponding author. Tel.: +91-361-2582266. Fax: +91-361-2582291. E-mail address: <u>tamalb@iitg.ac.in</u> (Tamal Banerjee).

Fig. S1. ¹H NMR spectrum of the DES.

Fig. S2. Equivalent electrical circuit corresponding to a typical Nyquist plot obtained from EIS.

Fig. S3. Spot analyses of the (a) TIEGel and (b) SIEGel samples showing the spectral regions EDX is conducted on; EDX spectra of (c) TIEGel and (d) SIEGel showing the peaks corresponding to the different elements present in the samples.

Table S1. Comparison of OPW, specific capacitance, specific energy, specific power, and ionic conductivity of TIEGel and SIEGel with those of pertinent ionogels and eutectogels reported in similar works at room temperature.

System	Electrodes /	OPW	С	E	Р	σ	Ref.
	Working electrode	(V)	(F g ⁻¹)	(W h kg ⁻¹)	(kW kg ⁻¹)	(mS cm ⁻¹)	
[BMIM][MeSO ₃]	rGO rGO	3	16.32 (5	20.39	3.31	1.27	This
$+ NMAc + TiO_2$			mV s ⁻¹)				work
(TIEGel)							
[BMIM][MeSO ₃]	rGO rGO	3	2.25 (5	2.81	0.31	0.09	This
$+ NMAc + SiO_2$			mV s ⁻¹)				work
(SIEGel)							
[BMIM][BF ₄] +	carbon nanocage	~3	176 (1 A	-	-	3.5	1
DMAA + TiO ₂			g-1)				
[BMIM][PF ₆] +	carbon nanocage	3	172 (1 A	-	-	1.46	2
PEGMA +			g-1)				
$PEGDA + TiO_2$							
[BMIM][BF ₄] +	Activated carbon	~3	143 (1 A	-	-	3.5	3
DMAA + MBAA	(AC)		g-1)				
$+ TiO_2$							
[BMIM][BF ₄] +	Au-Ti-coated AC	~3	102 (5	-	-	1.4	4
HEMA + TiO ₂			mV s ⁻¹)				
[EMIM][TFSI] +	glassy carbon	2.5	7.5 ±	-	-	9.3 ± 0.5	5
SiO ₂			0.4*				
[EMIM][TFSI] +	Vertically aligned	3	430*	0.1–0.5†	10‡	-	6
SiO ₂	carbon nanotubes		(100 mV				
			s ⁻¹)				
[EMIM][TFSI] +	AC	2.5	20 (2 mV	-	-	1.5	7
SiO ₂			s ⁻¹)				
[EMIM][TFSI] +	carbon monolith	2.5	75 (10	-	-	-	8
SiO ₂			mV s ⁻¹)				
[EMIM][TFSI] +	Si nanowires	2.5	4	-	-	3	9
$DMDMS + SiO_2$							
ChCl + EG +	Indium tin oxide	1.5	33.3	15.8	-	5.7	10
HEMA + PEGDA	(ITO) ITO		(0.01 A				
			g ⁻¹)				
ChCl + urea +	AC AC	2	76.6 (1 A	10.64	0.5	0.58	11
glycerol +			g-1)				
cellulose +							

PAAM							
EG + urea + ChCl	Zn AC	1.4	342.8	93.3	-	12.31	12
$+ZnCl_2 + silk$			(0.2 A g-				
fiber			1)				
$Zn(ClO_4)_2 + AM$	Zn N-rGO	2.2	194.7	117.5	~ 0.83	51.7	13
$+ H_2O$			(0.8 A g-				
			1)				
$EG + Zn(ClO_4)_2 +$	Zn AC	1.7	150.1	66.83	~ 0.19	63.5	14
H ₂ O +SPEEK +			(0.3 A g-				
PAAM			1)				

*Areal capacitance ($\mu F \ cm^{-2}$)

†Areal energy density ($\mu W h cm^{-2}$)

‡ Areal power density (mW cm⁻²)

Table S2. Specific capacitance and specific energy of TIEGel and SIEGel at room temperature and scan rates of 5, 10, 25, 50, and 100 mV s⁻¹.

System	Scan rate	С	С	E
	(mV s ⁻¹)	(F g ⁻¹)	(mF cm ⁻²)	(W h kg ⁻¹)
	5	16.32	395.78	20.39
TIEGel	10	10.12	245.41	12.65
THEOU	25	4.99	121.05	6.24
	50	2.77	67.30	3.45
	100	1.57	38.09	1.96
	5	2.25	54.53	2.81
SIEGel	10	1.83	44.37	2.29
	25	0.96	23.39	1.21
	50	0.53	12.99	0.67
	100	0.29	6.97	0.36

Table S3. Specific capacitance and specific energy of TIEGel at scan rates of 5, 10, 25, 50, and 100 mV s⁻¹ and controlled temperatures of 25, 50, and 80 $^{\circ}$ C.

Temperature	Scan rate	С	C	E
(°C)	(mV s ⁻¹)	(F g ⁻¹)	(mF cm ⁻²)	(W h kg ⁻¹)
	5	8.49	205.84	10.61
25	10	5.34	129.47	6.67
	25	2.33	56.53	2.91
	50	1.03	24.98	1.29
	100	0.35	8.50	0.44
	5	16.39	397.53	20.49
	10	8.74	212.06	10.93
50	25	4.24	102.85	5.30
	50	2.29	55.44	2.86
	100	0.98	23.79	1.23
	5	25.81	625.97	32.26
80	10	18.40	446.39	23.00
	25	10.79	261.80	13.49
	50	6.51	157.82	8.13
	100	3.39	82.13	4.23

References

- X. Liu, O. O. Taiwo, C. Yin, M. Ouyang, R. Chowdhury, B. Wang, H. Wang, B. Wu, N.
 P. Brandon, Q. Wang and S. J. Cooper, *Advanced Science*, 2019, 6, 1801337.
- 2 X. Liu, B. Wang, Z. Jin, H. Wang and Q. Wang, *J Mater Chem A Mater*, 2015, **3**, 15408–15412.
- 3 X. Liu, B. Wu, N. Brandon and Q. Wang, *Energy Technology*, 2017, 5, 220–224.
- 4 X. Liu, B. He, Z. Wang, H. Tang, T. Su and Q. Wang, *Sci Rep*, 2014, 4, 6673.
- 5 A. I. Horowitz and M. J. Panzer, *J Mater Chem*, 2012, **22**, 16534.
- B. Hsia, J. Marschewski, S. Wang, J. Bin In, C. Carraro, D. Poulikakos, C. P. Grigoropoulos and R. Maboudian, *Nanotechnology*, 2014, 25, 055401.
- M. Brachet, T. Brousse and J. Le Bideau, *ECS Electrochemistry Letters*, 2014, 3, A112–
 A115.
- 8 S. Zhu, P.-L. Taberna, N. Zhao and P. Simon, *Electrochem commun*, 2018, **96**, 6–10.
- 9 M. Brachet, D. Gaboriau, P. Gentile, S. Fantini, G. Bidan, S. Sadki, T. Brousse and J. Le Bideau, *J Mater Chem A Mater*, 2016, 4, 11835–11843.
- 10 H. Qin and M. J. Panzer, *ChemElectroChem*, 2017, 4, 2556–2562.
- S. Hong, Y. Yuan, C. Liu, W. Chen, L. Chen, H. Lian and H. Liimatainen, *J Mater Chem C Mater*, 2020, 8, 550–560.
- Z. Li, X. Xu, Z. Jiang, J. Chen, J. Tu, X. Wang and C. Gu, ACS Appl Mater Interfaces, 2022, 14, 44821–44831.
- Y. Wu, Y. Deng, K. Zhang, J. Qiu, J. Wu and L. Yan, ACS Appl Energy Mater, 2022, 5, 3013–3021.
- H. Yang, J. Zhang, J. Yao, D. Zuo, J. Xu and H. Zhang, *J Power Sources*, 2022, 548, 232070.