SUPPLEMENTARY INFORMATION

Advancing understanding of comparison of M-O covalency in

isostructural M-OSiMe₃ (M = Ce, Th, U) complexes

Kang Liu^{a,b}, Xiaowang Chi^{a,c}, Yan Guo^a, Kongqiu Hu^a, Lei Mei^a, Jipan Yu^{*,a} and Weiqun Shi^{*,a}

^aLaboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China

^bSpallation Neutron Source Science Center, Dongguan, 523803, China.

E-mail: yujipan@ihep.ac.cn; shiwq@ihep.ac.cn

^cSchool of Resource & Safety Engineering, Wuhan Institute of Technology, Wuhan, 430073, China.

Table of Contents

Supplementary Figures and Tables	4
Figure S1. The structure of the synthetic complexes and the labeled C-atomic numbers	4
Figure S2. ¹ H NMR (500 MHz, 298 K) spectrum of B in benzene-d ₆	4
Figure S3. ¹³ C { ¹ H} NMR (125 MHz, 298 K) spectrum of B in benzene-d ₆	5
Figure S4. ²⁹ Si { ¹ H} NMR (99 MHz, 298 K) spectrum of B in benzene-d ₆	5
Figure S5. ¹ H- ¹ H COSY (C ₆ D ₆ , 298 K) spectrum of B	6
Figure S6. ¹ H- ¹³ C HSQC (C ₆ D ₆ , 298 K) spectrum of B	6
Figure S7. ¹ H- ¹³ C HMBC (C ₆ D ₆ , 298 K) spectrum of B	7
Figure S8. ¹ H NMR (500 MHz, 298 K) spectrum of 1Ce in benzene-d ₆	7
Figure S9. ¹³ C { ¹ H} NMR (125 MHz, 298 K) spectrum of 1Ce in benzene-d ₆	8
Figure S10. ²⁹ Si { ¹ H} NMR (99 MHz, 298 K) spectrum of 1Ce in benzene-d ₆	8
Figure S11. ¹ H- ¹ H COSY (C ₆ D ₆ , 298 K) spectrum of 1Ce	9
Figure S12. ¹ H- ¹³ C HSQC (C ₆ D ₆ , 298 K) spectrum of 1Ce	9
Figure S13. ¹ H- ¹³ C HMBC (C ₆ D ₆ , 298 K) spectrum of 1Ce	10
Figure S14. ¹ H NMR (500 MHz, 298 K) spectrum of 2Ce in benzene-d ₆	10
Figure S15. ¹³ C { ¹ H} NMR (125 MHz, 298 K) spectrum of 2Ce in benzene-d ₆	11
Figure S16. ²⁹ Si { ¹ H} NMR (99 MHz, 298 K) spectrum of 2Ce in benzene-d ₆	11
Figure S17. ¹ H- ¹ H COSY (C ₆ D ₆ , 298 K) spectrum of 2Ce	12
Figure S18. ¹ H- ¹³ C HSQC (C ₆ D ₆ , 298 K) spectrum of 2Ce	12
Figure S19. ¹ H- ¹³ C HMBC (C ₆ D ₆ , 298 K) spectrum of 2Ce	13
Figure S20. ¹ H NMR (500 MHz, 298 K) spectrum of 2Th in benzene-d ₆	13
Figure S21. ¹³ C { ¹ H} NMR (125 MHz, 298 K) spectrum of 2Th in benzene-d ₆	14
Figure S22. ²⁹ Si { ¹ H} NMR (99 MHz, 298 K) spectrum of 2Th in benzene-d ₆	14
Figure S23. ¹ H- ¹ H COSY (C ₆ D ₆ , 298 K) spectrum of 2Th	15
Figure S24. ¹ H- ¹³ C HSQC (C ₆ D ₆ , 298 K) spectrum of 2Th	15
Figure S25. ¹ H- ¹³ C HMBC (C ₆ D ₆ , 298 K) spectrum of 2Th	16
Figure S26. ¹ H NMR (500 MHz, 298 K) spectrum of 2U in benzene-d ₆	16
Figure S27. ²⁹ Si { ¹ H} NMR (99 MHz, 298 K) spectrum of 2Th in benzene-d ₆	17
Figure S28. UV-Vis-NIR of 2U (2.75 mM) in THF at 298 K	17
Figure S29. Ionic radius linear fitting diagram of 5-coordinated M^{4+} (M = Ce, Th and	d U)
according to reference 64.	18
Figure S30. UV-Vis spectrum of 2U (0.4 mM) in THF at 298 K	18
Figure S31. UV-Vis spectrum of 2Ce (0.29 mM) in THF at 298 K	19
Figure S32. UV-Vis spectrum of 2Th (0.35 mM) in THF at 298 K	19
Figure S33. FT-IR of B.	20
Figure S34. FT-IR of 1Ce.	20
Figure S35. FT-IR of 2Ce.	21
Figure S36. FT-IR of 2Th.	21
Figure S37. FT-IR of 2U	22
Table S1. Crystal data and structural refinement for complexes B and 1Ce.	22
Table S2. Crystal data and structural refinement for complexes 2Ce, 2Th and 2U.	23

Table S3. Selected bond lengths (Å) and angles (o) for complex B.
Table S4. Selected bond lengths (Å) and angles (o) for complex 1Ce. 24
Table S5. Selected bond lengths (Å) and angles (o) for complex 2Ce. 24
Table S6. Selected bond lengths (Å) and angles (o) for complex 2Th. 25
Table S7. Selected bond lengths (Å) and angles (o) for complex 2U. 25
Table S8. Shape analysis for the metal centers of 2M. 25
Figure S38. NOCV with larger deformation density ($\Delta \rho$) of the main pairwise orbital interaction in
2Ce complex between the [Ce] and [OTMS] fragments together with the associated interaction
energies ΔE_{orb} . The charge eigenvalues (v) give an estimate of the relative size of the charge
migration. The direction of the charge flow is red to blue, and hydrogen atoms have been omitted
for clarity. The isodensity value is set to 0.0003 au26
Figure S39. NOCV with larger deformation density ($\Delta \rho$) of the main pairwise orbital interaction in
2Th complex between the [Th] and [OTMS] fragments together with the associated interaction
energies ΔE_{orb} . The charge eigenvalues (v) give an estimate of the relative size of the charge
migration. The direction of the charge flow is red to blue, and hydrogen atoms have been omitted
for clarity. The isodensity value is set to 0.0003 au27
Table S9. Final Coordinates of Geometry Optimized 2Ce. 27
Table S10. Final Coordinates of Geometry Optimized 2Th. 30
Table S11. Final Coordinates of Geometry Optimized 2U. 32

Supplementary Figures and Tables

Figure S1. The structure of the synthetic complexes and the labeled C-atomic numbers.

Figure S2. ¹H NMR (500 MHz, 298 K) spectrum of B in benzene-d₆.

Figure S3. ¹³C {¹H} NMR (125 MHz, 298 K) spectrum of B in benzene-d₆.

Figure S4. ²⁹Si {¹H} NMR (99 MHz, 298 K) spectrum of B in benzene-d₆.

Figure S5. ¹H-¹H COSY (C₆D₆, 298 K) spectrum of B.

Figure S6. ¹H-¹³C HSQC (C₆D₆, 298 K) spectrum of B.

Figure S7. ¹H-¹³C HMBC (C₆D₆, 298 K) spectrum of B.

Figure S8. ¹H NMR (500 MHz, 298 K) spectrum of 1Ce in benzene-d₆.

Figure S9. ¹³C {¹H} NMR (125 MHz, 298 K) spectrum of 1Ce in benzene-d₆.

Figure S10. ²⁹Si {¹H} NMR (99 MHz, 298 K) spectrum of 1Ce in benzene-d₆.

Figure S11. ¹H-¹H COSY (C₆D₆, 298 K) spectrum of 1Ce.

Figure S12. ¹H-¹³C HSQC (C₆D₆, 298 K) spectrum of 1Ce.

Figure S13. ¹H-¹³C HMBC (C₆D₆, 298 K) spectrum of 1Ce.

Figure S14. ¹H NMR (500 MHz, 298 K) spectrum of 2Ce in benzene-d₆.

Figure S15. ¹³C {¹H} NMR (125 MHz, 298 K) spectrum of 2Ce in benzene-d₆.

Figure S16. ²⁹Si {¹H} NMR (99 MHz, 298 K) spectrum of 2Ce in benzene-d₆.

Figure S17. ¹H-¹H COSY (C₆D₆, 298 K) spectrum of 2Ce.

Figure S18. ¹H-¹³C HSQC (C₆D₆, 298 K) spectrum of 2Ce.

Figure S20. ¹H NMR (500 MHz, 298 K) spectrum of 2Th in benzene-d₆.

Figure S21. ¹³C {¹H} NMR (125 MHz, 298 K) spectrum of 2Th in benzene-d₆.

Figure S22. ²⁹Si {¹H} NMR (99 MHz, 298 K) spectrum of 2Th in benzene-d₆.

Figure S23. ¹H-¹H COSY (C₆D₆, 298 K) spectrum of 2Th.

Figure S24. ¹H-¹³C HSQC (C₆D₆, 298 K) spectrum of 2Th.

Figure S25. ¹H-¹³C HMBC (C₆D₆, 298 K) spectrum of 2Th.

Figure S26. ¹H NMR (500 MHz, 298 K) spectrum of 2U in benzene-d₆.

Figure S27. ²⁹Si {¹H} NMR (99 MHz, 298 K) spectrum of 2Th in benzene-d₆.

Figure S28. UV-Vis-NIR of 2U (2.75 mM) in THF at 298 K.

Figure S29. Ionic radius linear fitting diagram of 5-coordinated M^{4+} (M = Ce, Th and U) according to reference 64.

The coordination numbers of Ce⁴⁺ are provided in reference 64, which are 6, 8, 10 and 12, respectively. Linear regression analysis was performed for the ionic radius of Ce⁴⁺ using the least square method, where R² value exceeds 0.99. It can be reasonably deduced that the ionic radius of 5-coordinated Ce⁴⁺ is 0.83 Å (see Figure S29). Similarly, the calculated ionic radius values for 5-coordinated U⁴⁺ and Th⁴⁺ are 0.86 Å, and 0.91 Å, respectively.

Figure S30. UV-Vis spectrum of 2U (0.4 mM) in THF at 298 K.

Figure S31. UV-Vis spectrum of 2Ce (0.29 mM) in THF at 298 K.

Figure S32. UV-Vis spectrum of 2Th (0.35 mM) in THF at 298 K.

Figure S34. FT-IR of 1Ce.

Figure S35. FT-IR of 2Ce.

Figure S36. FT-IR of 2Th.

Figure S37. FT-IR of 2U.

Table S1. Crystal data and structural refinement for complexes B and 1Ce.

Complex	В	1Ce
Empirical formula	$C_{68}H_{106}Ce_2N_8O_2Si_6$	C ₃₀ H ₄₅ CeClN ₄ Si ₃
Formula weight (amu)	1516.38	721.54
Wavelength (Å)	0.71073	0.71073
Crystal system	monoclinic	monoclinic
Space group	$P2_1$	$P2_{1}/c$
<i>a</i> (Å)	10.1162(3)	11.3841(4)
<i>b</i> (Å)	19.3047(5)	16.7664(7)
<i>c</i> (Å)	19.5448(5)	19.1613(7)
α (°)	90	90
eta (°)	101.6510(10)	106.4920(10)
γ (°)	90	90
$V(Å^3)$	3738.26(18)	3506.9(2)
Ζ	2	4
$ ho_{ m calcd}$ (g/cm ³)	1.347	1.367
μ (mm ⁻¹)	1.344	1.501
F000 (e ⁻)	1572.0	1480.0

2.498/27.527	2.671/27.512
50498	68583
17044	8041
0.0218	0.0198
17044/7/793	8041/0/362
1.007	1.089
0.0161/0.0353	0.0155/0.0386
0.0172/0.0356	0.0164/0.0393
0.34/-0.23	0.44/-0.29
	2.498/27.527 50498 17044 0.0218 17044/7/793 1.007 0.0161/0.0353 0.0172/0.0356 0.34/-0.23

Table S2. Crystal data and structural refinement for complexes 2Ce, 2Th and 2U.

Complex	2Ce	2Th	2 U
Empirical formula	C33H54CeN4OSi4	$C_{33}H_{54}N_4OSi_4Th$	C ₃₃ H ₅₄ N ₄ OSi ₄ U
Formula weight (amu)	775.28	867.20	873.19
Wavelength (Å)	0.71073	0.71073	0.71073
Crystal system	trigonal	trigonal	trigonal
Space group	R3c	R3c	R3c
<i>a</i> (Å)	16.9979(6)	17.113(4)	17.171(4)
<i>b</i> (Å)	16.9979(6)	17.113(4)	17.171(4)
<i>c</i> (Å)	23.6994(10)	24.012(5)	23.790(8)
α (°)	90	90	90
eta (°)	90	90	90
γ (°)	120	120	120
$V(Å^3)$	5930.1(5)	6090(3)	6075(3)
Ζ	6	6	6
$ ho_{ m calcd}$ (g/cm ³)	1.303	1.419	1.432
μ (mm ⁻¹)	1.302	3.819	4.155
F000 (e ⁻)	2412.0	2604.0	2616.0
Theta min/max (°)	3.258/29.310	3.231/27.472	2.193/27.496
Reflections collected	9847	44299	28533
Independent reflections	2472	3054	3101
R _{int}	0.0637	0.0272	0.0564
Data/restr./param.	2472/1/134	3054/1/133	3101/121/134
GOF	1.050	1.102	0.892
$R_1/wR_2^a(I \ge 2\sigma(I))$	0.0327/0.0830	0.0109/0.0240	0.0144/0.0326
R_1/wR_2^a (all data)	0.0368/0.074	0.0149/0.0256	0.0212/0.0336
Res.peak/hole(e-·Å-3)	0.43/-0.47	0.21/-0.20	0.20/-0.63

	Bond Lengths (Å)					
Cel-N1	2.373(2)	Ce1-N2	2.351(2)	Ce1-N3	2.350(2)	
Cel-N4	2.630(2)	Cel-Ol	2.5839(19)			
		Bond an	gles (°)			
N1-Ce1-N2	121.96(7)	N1-Ce1-N3	115.12(7)	N2-Ce1-N3	114.77(7)	
01-Ce1-N4	170.62(6)	N1-Ce1-N4	80.37(7)	N2-Ce1-N4	81.09(7)	
N3-Ce1-N4	79.81(7)					

Table S3.	Selected	bond	lengths	(Å)	and	angles	(0`) for (comi	olex	B.
1 4010 001	Scieccea	NOIL C	i suis	(* =)		angles .	<u>ر ب</u>	,		, , , , , , , , , , , , , , , , , , , 	

Table S4. Selected bond	lengths (Å) and angles (o) for	complex 1Ce.
			0,101	compres i con

Bond Lengths (Å)					
Ce1-Cl1	Ce1-Cl1 2.6561(4) Ce1-N1 2.2273(11) Ce1-N2 2.199				
Ce1-N3	2.2251(11	Ce1-N4	2.6347(11)		
		Bond an	gles (°)		
N1-Ce1-N2	116.26(4)	N1-Ce1-N3	113.47(4)	N2-Ce1-N3	121.53(4)
Cl1-Ce1-N4	172.02(3)	N1-Ce1-N4	80.90(4)	N2-Ce1-N4	79.12(4)
N3-Ce1-N4	80.30(4)				

Table S5. Selected bond lengths (Å) and angles (o) for complex 2Ce.

Bond Lengths (Å)							
Ce1-O1	2.092(12)	Ce1-N1	2.246(5)	Ce1-N2	2.246(5)		
Ce1-N3	2.246(5)	Ce1-N4	2.675(13)				
	Bond angles (°)						
N1-Ce1-N2	116.41(9)	N1-Ce1-N3	116.41(9)	N2-Ce1-N3	116.41(9)		
O1-Ce1-N4	180.0	N1-Ce1-N4	78.94(14)	N2-Ce1-N4	78.94(14)		
N3-Ce1-N4	78.94(14)						

	Bond Lengths (Å)					
Th1-O1	2.173(4)	Th1-N1	2.327(2)	Th1-N2	2.327(2)	
Th1-N3	2.327(2)	Th1-N4	2.738(5)	Si4-O1	1.626(4)	
		Bond any	gles (°)			
N1-Th1-N2	115.44(4)	N1-Th1-N3	115.44(4)	N2-Th1-N3	115.44(4)	
O1-Th1-N4 180.0 N1-Th1-N4 77.49(6) N2-Th1-N4 77.49					77.49(6)	
N3-Th1-N4	77.49(6)	O1-Th1-Si4	180.0			

Table S6. Selected bond lengths (Å) and angles (o) for complex 2Th.

Table S7. S	elected bond leng	gths (Å) and	angles (o) fo	or complex 2U.

Bond Lengths (Å)					
U1-01	2.114(5)	U1-N1	2.264(3)	U1-N2	2.264(3)
U1-N3	2.264(3)	U1-N4	2.677(7)	Si4-O1	1.621(6)
	Bond angles (°)				
N1-U1-N2	116.48(5)	N1-U1-N3	116.48(5)	N2-U1-N3	116.48(5)
01-U1-N4	180.0	N1-U1-N4	79.05(8)	N2-U1-N4	79.05(8)
N3-U1-N4	79.05(8)	01-U1-Si4	180.0		

Table S8. Sha	pe analysis	for the metal	centers of 2	М.
---------------	-------------	---------------	--------------	----

ML ₅	PP-5	vOC-5	TBPY-5	SPY-5	JTBPY-5
2Ce	37.234	7.633	0.689	6.057	2.304
2Th	37.346	7.800	0.877	6.227	2.502
2 U	37.234	7.629	0.669	6.037	2.345

PP-5: Pentagon

vOC-5: Vacant octahedron

TBPY-5: Trigonal bipyramid

SPY-5: Square pyramid

Figure S38. NOCV with larger deformation density ($\Delta \rho$) of the main pairwise orbital interaction in **2Ce** complex between the [Ce] and [OTMS] fragments together with the associated interaction energies ΔE_{orb} . The charge eigenvalues (v) give an estimate of the relative size of the charge migration. The direction of the charge flow is red to blue, and hydrogen atoms have been omitted for clarity. The isodensity value is set to 0.0003 au.

Figure S39. NOCV with larger deformation density ($\Delta \rho$) of the main pairwise orbital interaction in **2Th** complex between the [Th] and [OTMS] fragments together with the associated interaction energies ΔE_{orb} . The charge eigenvalues (*v*) give an estimate of the relative size of the charge migration. The direction of the charge flow is red to blue, and hydrogen atoms have been omitted for clarity. The isodensity value is set to 0.0003 au.

Table S9.	Final Coordin	nates of Geon	netry Optimized	2Ce.

Ce	-0.00153	-0.0019	0.29602
0	-0.01003	-0.01858	2.42908
Si	-0.01283	-0.02804	4.10822
Ν	0.00662	0.01401	-2.43925
Ν	-2.19027	-0.58945	-0.15639

Ν	1.60769	-1.59955	-0.15006
Ν	0.58261	2.19303	-0.1312
С	-1.34769	-0.38182	-2.93135
С	1.03084	-0.95806	-2.92819
С	0.34047	1.38989	-2.91714
Si	-3.65186	0.1496	0.53407
С	-2.29965	-1.72412	-0.98644
Si	1.69485	-3.23993	0.52872
С	2.65192	-1.1213	-0.96866
Si	1.95564	3.08494	0.56048
С	-0.34599	2.86321	-0.95453
С	1.59882	-0.80696	4.74497
С	-0.14918	1.75257	4.75668
С	-1.49151	-1.0411	4.73808
Н	-1.32354	-0.45262	-4.04313
Н	-2.03116	0.4413	-2.65979
С	-1.85663	-1.6799	-2.34843
Н	1.09034	-0.8947	-4.03908
Н	0.65672	-1.96309	-2.66685
С	2.40417	-0.75344	-2.33132
Н	0.26512	1.41622	-4.02856
Н	1.39562	1.56716	-2.64589
С	-0.52888	2.47298	-2.32114
С	-4.67729	-1.02453	1.63213
С	-3.10018	1.61645	1.60006
С	-4.77262	0.76628	-0.87428
С	-2.83196	-2.95718	-0.51122
С	3.21254	-3.54587	1.64185
С	0.13647	-3.50748	1.57359
С	1.74146	-4.50836	-0.88855
С	3.98143	-0.96675	-0.48067
С	1.45516	4.55526	1.6667
С	2.95465	1.87017	1.61837
С	3.0466	3.75434	-0.84721
С	-1.14855	3.93459	-0.46708
Н	2.48328	-0.24456	4.39481
Н	1.70459	-1.84982	4.39519
Н	1.62556	-0.81979	5.85064
Н	-1.0763	2.2394	4.4037
Н	0.7031	2.36855	4.41712
Н	-0.15901	1.77427	5.86249
Н	-1.44708	-2.08445	4.37668
Н	-2.44869	-0.60812	4.39545
Н	-1.513	-1.06962	5.84358

С	-1.95582	-2.82894	-3.15627
С	3.45594	-0.26092	-3.12747
С	-1.47471	3.14221	-3.12137
Н	-4.06744	-1.47045	2.43856
Н	-5.1393	-1.84553	1.05616
Н	-5.49727	-0.45478	2.10961
Н	-2.6724	2.43006	0.98836
Н	-2.34946	1.31861	2.35339
Н	-3.97147	2.03107	2.14058
Н	-5.03198	-0.05393	-1.56822
Н	-4.27504	1.56246	-1.45687
Н	-5.71863	1.17907	-0.47666
С	-2.92739	-4.0864	-1.33401
Н	-3.16464	-3.00955	0.52995
Н	3.28387	-2.80091	2.45488
Н	4.16081	-3.52958	1.07638
Н	3.12564	-4.54463	2.11081
Н	-0.77379	-3.54334	0.94961
Н	0.0066	-2.71324	2.32991
Н	0.20944	-4.47222	2.10947
Н	2.58906	-4.31542	-1.57115
Н	0.81	-4.47441	-1.48196
Н	1.85549	-5.53643	-0.49676
С	5.0142	-0.48042	-1.29194
Н	4.18407	-1.23345	0.56115
Н	0.76962	4.24658	2.47656
Н	0.97005	5.36673	1.09629
Η	2.36078	4.98072	2.13979
Н	3.43704	1.09046	1.00318
Н	2.32755	1.37249	2.37906
Н	3.75663	2.41549	2.15012
Н	2.46414	4.39267	-1.53632
Н	3.4862	2.92857	-1.43525
Н	3.87783	4.36534	-0.44822
С	-2.07913	4.59076	-1.28237
Н	-1.02758	4.23716	0.57758
Н	-1.62146	-2.76732	-4.20007
С	-2.48623	-4.0318	-2.66691
Н	3.24465	0.00238	-4.17204
С	4.75833	-0.12033	-2.62574
Н	-1.58823	2.83379	-4.16879
С	-2.25193	4.19679	-2.61993
Н	-3.34487	-5.01575	-0.92892
Н	6.02397	-0.37839	-0.87715

Н	-2.67581	5.41185	-0.86779
Н	-2.55763	-4.91055	-3.31663
Н	5.56071	0.26034	-3.26661
Н	-2.97744	4.70503	-3.26394

Table S10. Final Coordinates of Geometry Optimized 2Th.

Th	-0.00105	3.41E-04	0.32228
0	-0.00804	0.00128	2.49801
Si	-0.01291	0.00456	4.18006
Ν	-0.06995	2.29374	-0.1741
Ν	0.00708	-0.00247	-2.43854
Ν	-1.95085	-1.20829	-0.17579
Ν	2.02176	-1.08666	-0.16478
Si	-1.23379	3.45284	0.49851
С	0.96599	2.75631	-1.02495
С	-0.03253	1.40931	-2.94335
С	1.25205	-0.67331	-2.93799
С	-1.19397	-0.74459	-2.94484
Si	-2.37465	-2.79266	0.5028
С	-2.86646	-0.54633	-1.03275
Si	3.60416	-0.65819	0.51547
С	1.90948	-2.21384	-1.01797
С	0.51926	1.71588	4.80696
С	1.19937	-1.31154	4.81486
С	-1.76256	-0.38679	4.80478
С	-2.1399	4.3547	-0.90931
С	-2.48135	2.44281	1.51333
С	-0.46513	4.76679	1.64551
С	1.0485	2.3032	-2.37994
С	1.96809	3.65817	-0.57223
Н	-1.02521	1.80817	-2.67144
Н	0.03555	1.39261	-4.05476
Н	2.09229	-0.01313	-2.66119
Н	1.20905	-0.72261	-4.04968
С	1.48329	-2.05709	-2.37513
Н	-1.04377	-1.80272	-2.66875
Н	-1.20974	-0.68121	-4.05654
С	-2.51067	-0.25362	-2.3877
С	-0.87786	-3.36486	1.52193
С	-2.70113	-4.03367	-0.90068
С	-3.89874	-2.77874	1.64737
С	-4.15057	-0.12878	-0.58644
С	4.35244	-1.98142	1.66532
С	3.34835	0.92718	1.52927

С	4.84492	-0.3236	-0.88634
С	2.18804	-3.53298	-0.56559
Н	-0.1675	2.50366	4.44771
Н	1.53548	1.97324	4.45699
Н	0.52531	1.7549	5.91222
Н	0.91562	-2.32072	4.4649
Н	1.22459	-1.33468	5.9203
Н	2.22682	-1.11143	4.46044
Н	-2.49272	0.3628	4.44927
Н	-1.80183	-0.39526	5.91003
Н	-2.10065	-1.3773	4.44998
Н	-2.82478	5.12804	-0.51421
Н	-2.73933	3.64878	-1.51224
Н	-1.42466	4.85773	-1.58549
Н	-3.19004	3.12952	2.01313
Н	-1.99577	1.84308	2.30485
Н	-3.07985	1.76511	0.87758
Н	0.18406	5.47281	1.09791
Н	0.13421	4.30583	2.45163
Н	-1.26746	5.36135	2.12265
С	2.10152	2.74629	-3.20462
С	3.00234	4.09363	-1.41142
Н	1.92099	4.00709	0.46441
С	1.34593	-3.18954	-3.20216
С	-3.4184	0.43302	-3.21828
Н	-0.60077	-2.64133	2.31041
Н	0.00851	-3.54832	0.88767
Н	-1.11993	-4.31938	2.02585
Н	-3.49363	-3.66826	-1.5791
Н	-1.78945	-4.20214	-1.50204
Н	-3.02893	-5.01199	-0.50234
Н	-3.80012	-2.02648	2.45102
Н	-4.01392	-3.76909	2.12784
Н	-4.83376	-2.57094	1.09754
С	-5.04231	0.54519	-1.43149
Н	3.65032	-2.26984	2.46866
Н	5.26693	-1.58464	2.14612
Н	4.64075	-2.89673	1.11862
Н	3.06525	1.78465	0.89191
Н	4.29475	1.19659	2.03462
Н	2.5815	0.80737	2.31641
Н	4.92721	-1.19463	-1.56188
Н	5.8549	-0.11596	-0.48629
Н	4.53543	0.548	-1.4911

С	2.05348	-4.64536	-1.40705
Н	2.50839	-3.66761	0.4726
Н	2.13967	2.39326	-4.24343
С	3.07937	3.63618	-2.73735
Н	3.75525	4.79005	-1.02369
Н	1.02696	-3.04488	-4.24261
С	1.62598	-4.48178	-2.73512
С	-4.67996	0.83585	-2.75719
Н	-3.12827	0.63855	-4.25694
Н	-6.02357	0.84965	-1.04855
Н	2.27881	-5.64598	-1.01949
Н	3.88562	3.97048	-3.39897
Н	1.51672	-5.34631	-3.39858
Н	-5.37057	1.3638	-3.42343
Н	-4.43284	-0.3405	0.44994

Table S11. Final Coordinates of Geometry Optimized 2U.

U	-0.04167	-0.09436	0.26238
0	-0.20663	-0.62566	2.29889
Si	-0.28169	-1.02498	3.93421
Ν	0.12539	0.52879	-2.34943
Ν	-2.26942	-0.12102	-0.28746
Ν	1.43244	-1.702	-0.42177
Ν	0.95986	1.96905	0.33086
С	-1.25609	0.52942	-2.93244
С	0.95566	-0.51698	-3.03165
С	0.75006	1.87692	-2.5542
Si	-3.4475	-1.42388	0.01205
С	-2.72907	1.0598	-0.92492
Si	3.05128	-2.12134	0.17879
С	0.82415	-2.49173	-1.42994
Si	0.40804	3.36848	1.2855
С	2.14082	2.12076	-0.44236
С	-2.22753	1.43489	-2.21139
Н	-1.61369	-0.5139	-2.89018
Н	-1.18884	0.8249	-4.00374
С	0.53111	-1.93247	-2.7152
Н	1.99504	-0.35354	-2.69903
Н	0.91542	-0.34518	-4.13076
С	2.08419	2.04693	-1.86982
Н	0.02756	2.61328	-2.1624
Н	0.86052	2.05551	-3.64756
С	0.90305	0.09247	4.90871
С	-2.05495	-0.76813	4.55886

С	0.22004	-2.84191	4.15646
С	-2.51637	-2.89027	0.77114
С	-4.23004	-1.95964	-1.63739
С	-4.85417	-0.93873	1.20356
С	-3.6896	1.91633	-0.31963
С	3.40046	-1.02511	1.68506
С	4.34421	-1.79552	-1.17716
С	3.22407	-3.93908	0.72506
С	0.45428	-3.84757	-1.20355
С	-1.17022	2.87028	2.21218
С	0.02694	4.82448	0.12208
С	1.66966	3.96564	2.58403
С	3.41252	2.3453	0.15183
С	-2.68304	2.61813	-2.82492
С	-0.09964	-2.72288	-3.69746
С	3.26142	2.18481	-2.62933
Н	1.94581	-0.02893	4.56442
Н	0.87526	-0.14425	5.98874
Н	0.63454	1.15804	4.79235
Н	-2.37562	0.2815	4.43014
Н	-2.13896	-1.016	5.63344
Н	-2.77027	-1.40689	4.01028
Н	-0.45619	-3.51555	3.59977
Н	0.18757	-3.13777	5.22164
Н	1.24682	-3.0217	3.78973
Н	-3.23564	-3.69049	1.02846
Н	-1.98351	-2.60796	1.6958
Н	-1.7809	-3.31883	0.06724
Н	-4.685	-1.10118	-2.16411
Н	-5.02543	-2.71058	-1.47384
Н	-3.47489	-2.40989	-2.30705
Н	-5.5353	-0.18684	0.76769
Н	-4.46377	-0.53711	2.15614
Н	-5.46075	-1.83343	1.44133
С	-4.13436	3.08659	-0.94896
Н	-4.07667	1.64481	0.66749
Н	4.42691	-1.21012	2.0531
Н	2.70162	-1.23933	2.51212
Н	3.32908	0.04899	1.43967
Н	4.10705	-2.36137	-2.09706
Н	5.35441	-2.1046	-0.84907
Н	4.38654	-0.72244	-1.43744
Н	3.08875	-4.64613	-0.11224
Н	2.49989	-4.20332	1.5171

Н	4.23933	-4.10187	1.13449
С	-0.16061	-4.61903	-2.19728
Н	0.66041	-4.28141	-0.22015
Н	-1.50276	3.71583	2.84374
Н	-1.00865	2.00187	2.87453
Н	-1.99791	2.63074	1.52166
Н	0.89872	5.06743	-0.51253
Н	-0.23171	5.73438	0.69527
Н	-0.82485	4.59109	-0.54217
Н	2.5768	4.39667	2.12561
Н	1.98118	3.14797	3.25927
Н	1.20738	4.75515	3.2069
С	4.57287	2.48696	-0.62148
Н	3.47395	2.40227	1.2431
Н	-2.29102	2.8817	-3.81583
С	-3.6314	3.44852	-2.2096
Н	-0.30475	-2.27733	-4.67952
С	-0.44538	-4.05935	-3.45516
Н	3.19143	2.13018	-3.72361
С	4.50704	2.40596	-2.02213
Н	-4.87523	3.72082	-0.44799
Н	-0.42574	-5.66155	-1.9853
Н	5.53469	2.65863	-0.12381
Н	-3.97431	4.36147	-2.70805
Н	-0.92755	-4.65676	-4.23632
Н	5.40963	2.51529	-2.63276