Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information

Rapid synthesis of sea urchin-like Ni(OH)₂@Ni(Fe)OOH

electrocatalysts for the oxygen evolution reaction

Fang Wu,^{*a,b} Yuhong Jiao,^{a,b} Jin-Long Ge,^{a,b} Yujun Zhu,^{*c} Chao Feng,^{a,b} Zhong Wu,^{a,b} and Changpeng Lv^{a,b}

^aSchool of Materials and Chemical Engineering, Bengbu University, Bengbu, Anhui 233030, China. E-

mail: bbcwuf@163.com

^bSilicon Based New Materials Engineering Research Center of Anhui Province, Bengbu University,

Bengbu, Anhui 233030, China.

^cDepartment of Pharmacy and Biomedical Engineering, Anhui Medical University, Hefei 230000, China.

E-mail: zyj8119@sina.com

Fig. S1 SEM-EDX spectrum of Ni(OH)₂@Ni(Fe)OOH-100.

Fig. S2 XPS survey spectrum of Ni(OH)₂@Ni(Fe)OOH-100.

Fig. S3 Raman spectrum of Ni(OH)₂@Ni(Fe)OOH-100.

Fig. S4 The cycling voltammetry curve (the 20^{th} cycle) of Ni(OH)₂@Ni(Fe)OOH-100 in 1 M KOH at the scan rate of 5 mV s⁻¹ after iR-correction.

Fig. S5 (a) Polarization curves and (b) EIS spectra of Ni(OH)₂@Ni(Fe)OOH-100 and Ni(OH)₂@Ni(Fe)OOH-100 powder.

Fig. S6 The CV curves of (a) $Ni(OH)_2$, (b) $Ni(OH)_2@Ni(Fe)OOH-25$, (c) $Ni(OH)_2@Ni(Fe)OOH-50$, (d) $Ni(OH)_2@Ni(Fe)OOH-75$ and (e) $Ni(OH)_2@Ni(Fe)OOH-100$ with different scan rates to evalute the ECSA for OER process.

Fig. S7 ECSA-normalized polarization curves for Ni(OH)₂, (b) Ni(OH)₂@Ni(Fe)OOH-25, (c) Ni(OH)₂@Ni(Fe)OOH-50, (d) Ni(OH)₂@Ni(Fe)OOH-75 and (e) Ni(OH)₂@Ni(Fe)OOH-100.

Fig. S8 EIS spectra of Ni(OH)₂@Ni(Fe)OOH-100 before and after stability test for 15 h.

Fig. S9 Stability test of Ni(OH)₂@Ni(Fe)OOH-100 at 100 mA cm⁻² for 100 hours.

Fig. S10 SEM images of Ni(OH)₂@Ni(Fe)OOH-100 after stability test for 15 h.

Fig. S11 (a) TEM and (b) HRTEM images of $Ni(OH)_2@Ni(Fe)OOH-100$ after stability test for 15 h.

Fig. S12 (a) XRD pattern of Ni(OH)₂@Ni(Fe)OOH-100 after stability test. High-resolution XPS spectra of (b) Ni 2p and (c) O 1s of Ni(OH)₂@Ni(Fe)OOH-100 after stability test for 15 h.

Fig. S13 20 CV cycles in the potential range of 1.0–1.6 V versus RHE at the scan rate of 5 mV s⁻¹ after iR-correction.

	η@	η@	Tafel slope	References
Catalysts	10 mA cm ⁻²	100 mA cm ⁻²	(mV dec ⁻¹)	
	(mV)	(mV)		
Ni(OH) ₂ @Ni(Fe)OOH-100	245	310	40.7	This work
Fe-doped-Ni(OH) ₂ -40 min	248		61	[1]
Fe-NiTe-Ni ₁₂ P ₅		340	66	[2]
NiFe-LDH	247		37	[3]
Ni ₁₈ Fe ₁₂ Al ₇₀	255	345	37	[4]
CoFe ₂ O ₄	287		43	[5]
Co ₂ P-Ni ₃ S ₂ /NF		331.7	31.6	[6]
CoNiLDH/FeOOH	250		60	[7]
FeNi₃@NCNT	264		58.5	[8]
$ZnFe_2O_4@Ni_3S_2$	254		39.29	[9]
NiCo ₂ O ₄ @MoS ₂ /TM	313	380	66.8	[10]
NiO-Ni ₃ Se ₄ /MXene	260		39.6	[11]
C-NiFe ₂ O ₄ @A-S-NiFe ₂ O ₄	275		76.1	[12]

Table S1. Comparison of OER performance of $Ni(OH)_2@Ni(Fe)OOH-100$ with some Ni or Fe-based electrocatalysts in 1 M KOH.

Complex	Solution resistance R _s	Charge transfer resistance R _{ct}	
Samples	(Ω)	(Ω)	
Ni(OH) ₂	1.41	7.29	
Ni(OH)2@Ni(Fe)OOH-25	1.47	7.37	
Ni(OH)2@Ni(Fe)OOH-50	1.45	4.24	
Ni(OH)₂@Ni(Fe)OOH-75	1.45	3.83	
Ni(OH) ₂ @Ni(Fe)OOH-100	1.40	3.66	
RuO ₂	1.31	17.88	
Ni(OH)₂@Ni(Fe)OOH-100	1 1 5	57.12	
powder@NF	1.15		
NF	1.52	382.1	
Post-Ni(OH) ₂ @Ni(Fe)OOH-100	1 20	2.04	
(15 h)	1.38		

Table S2. The values of R_s and R_{ct} obtained from fitted plots using equivalent circuit.

Catalusta	Voltage	References
Catalysts	@10 mA cm ⁻² (V)	
Ni(OH)2@Ni(Fe)OOH-100 Pt/C	1.54	This work
Co/CoO/NC/CC Co/CoO/NC/CC	1.66	[13]
Ni ₂ P-Fe ₂ P/NF Ni ₂ P-Fe ₂ P/NF	1.561	[14]
W ₂ N/WC W ₂ N/WC	1.58	[15]
V-Co ₂ P ₄ O ₁₂ /CC V-Co ₂ P ₄ O ₁₂ /CC	1.60	[16]
Co₃S₄@NiFe-200/NF∥Co₃S₄@NiFe-200/NF	1.595	[17]
ZnCoS-NSCNT/NP ZnCoS-NSCNT/NP	1.59	[18]
MoS ₂ /NiFe-LDH MoS ₂ /NiFe-LDH	1.61	[19]
Co ₂ Mo ₃ O ₈ @NC-800/NF Pt/C	1.67	[20]
RuO ₂ /NF Pt/C@NF	1.56	[21]
Mn-NiCo ₂ S ₄ /NF Pt/C	1.59	[22]

Table S3. Comparison of overall water splitting performance with some reportedelectrocatalysts in 1 M KOH.

Supplementary references

[S1] C.-F. Li, H.-B. Tang, J.-W. Zhao, G.-R. L, *J. Mater. Chem. A*, 2023, **11**, 5841-5850.
[S2] Y.-J. Tang, Y. Zou, D. Zhu, *J. Mater. Chem. A*, 2022, **10**, 12438-12446.
[S3] H. Koshikawa, H. Murase, T. Hayashi, K. Nakajima, H. Mashiko, S. Shiraishi, Y. Tsuji, *ACS Catal.*, 2020, **10**, 1886-1893.

[S4] X. Liu, H. Lu, S. Zhu, Z. Cui, Z. Li, S. Wu, W. Xu, Y. Liang, G. Long, H. Jiang, *Angew. Chem. Int. Ed.*, 2023, **62**, e202300800.

[S5] G. Lee, M. Jeong, H. R. Kim, M. Kwon, S. Baek, S. Oh, M. Lee, D. Lee, J. H. Joo, *ACS Appl. Mater. Interfaces*, 2022, **14**, 48598-48608.

[S6] H. Li, X. Gao, G. Li, Small, 2023, 19, 2304081.

[S7] P. Zhao, S. Fu, Y. Luo, C. Peng, L. Cheng, Z. Jiao, Small, 2023, 19, 2305241.

[S8] D. Chen, Q. Sun, C. Han, Y. Guo, Q. Huang, W. A. Goddard, J. Qian, *J. Mater. Chem. A*, 2022, **10**, 16007-16015.

[S9] H. Liu, J. Miao, Y. Wang, S. Chen, Y. Tang, D. Zhu, *Chem. Commun.*, 2024, **60**, 4443-4446.

[S10] W. Bao, Y. Li, J. Zhang, T. Ai, C. Yang, L. Feng, *Int. J. Hydrogen Energy*, 2023, **48**, 12176-12184.

[S11] L. Yan, J. Liang, D. Song, X. Li, H. Li, Adv. Funct. Mater., 2024, **34**, 2308345.

[S12] X. Li, M. Wang, J. Fu, F. Lu, Z. Li, G. Wang, Small, 2024, 20, 2310040.

[S13] K. Dai, N. Zhang, L. Zhang, L. Yin, Y. Zhao, B. Zhang, *Chem. Eng. J.*, 2021, **414**, 128804.

[S14] L. Wu, L. Yu, F. Zhang, B. McElhenny, D. Luo, A. Karim, S. Chen, Z. Ren, *Adv. Funct. Mater.*, 2021, **31**, 2006484.

[S15] J. Diao, Y. Qiu, S. Liu, W. Wang, K. Chen, H. Li, W. Yuan, Y. Qu, X. Guo, *Adv. Mater.*, 2020, **32**, 1905679.

[S16] X.-W. Chang, S. Li, L. Wang, L. Dai, Y.-P, Wu, X.-Q. Wu, Y. Tian, S. Zhang, D.-S. Li, *Adv. Funct. Mater.*, 2024, **34**, 2313974.

[S17] L. Chen, H. Chen, L. Wu, G. Li, K. Tao, L. Han, *ACS Appl. Mater. Interfaces*, 2024, **16**, 8751-8762.

[S18] Z. Yu, Y. Bai, S. Zhang, Y. Liu, N. Zhang, K. Sun, *J. Mater. Chem. A*, 2018, **6**, 10441-10446.

[S19] X.-P. Li, L.-R. Zheng, S.-J. Liu, T. Ouyang, S. Ye, Z.-Q. Liu, *Chinese Chem. Lett.*, 2022, **33**, 4761-4765.

[S20] T. Ouyang, X.-T. Wang, X.-Q. Mai, A.-N. Chen, Z.-Y. Tang, Z.-Q. Liu, *Angew. Chem. Int. Ed.*, 2020, **59**, 11948-11957.

[S21] H. Yan, Y. Xie, A. Wu, Z. Cai, L. Wang, C. Tian, X. Zhang, H. Fu, *Adv. Mater.*, 2019, **31**, 1901174.

[S22] Y. Chen, H. Wu, N. Tang, Y. Zhang, Y. Wang, *Chem. Commun.*, 2024, **60**, 1751-1753.