Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Basis groups	r(C–Cr)/Å	r(C–O)/Å
Experimental	1.914	1.141
B3LYP/6-311G++(2d,p)	1.928	1.140
MPW1PW91/6-311G++(2d,p)	1.903	1.136
PBEPBE/6-311G++(2d,p)	1.906	1.153
HSHE1PBE/6-311G++(2d,p)	1.905	1.145
B3LYP/6-311G++(2d,p)-pfd	1.916	1.139
B3LYP/6-311G++(2d,p)-gd2	1.929	1.139
B3LYP/6-311G++(2d,p)-gd3bj	1.922	1.139
B3LYP/6-311G++(2d,p)-gd3	1.928	1.140
PBEPBE/6-311G++(2d,p)-gd2	1.907	1.153
PBEPBE/6-311G++(2d,p)-gd3	1.906	1.153
PBEPBE/6-311G++(2d,p)-gd3bj	1.903	1.153
PBEPBE/6-311G++(2d,p)-pfd	1.895	1.152
HSHE1PBE/6-311G++(2d,p)-pfd	1.893	1.136

S1. Comparison of $Cr(CO)_6$ bond lengths with different basis groups, in Å.

S2. Specific details of CO, H_2O , H_2 , CO_2 heat capacities and entropy calculations, in cal/(mol·K).

	СО		Н	$_{2}O$	H	H ₂	CO_2		
	Cv	S	Cv	S	Cv	S	Cv	S	
Total	4.973	47.193	6.011	45.091	4.968	31.140	6.836	51.035	
Electronic	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Translational	2.981	35.923	2.981	34.608	2.981	28.080	2.981	37.270	
Rotational	1.987	11.269	2.981	10.476	1.987	3.059	1.987	13.075	
Vibrational	0.005	0.001	0.049	0.007	0.000	0.000	1.868	0.690	

S3. Plot of scan of total energy variation for relaxed scanning step I, in kcal/mol.

S4. IRC analysis was used to verify that the reactants and products of TS2b-3 point to intermediate 2b and intermediate 3, respectively, (a) Total Energy along IRC, (b) Structural diagram of the reactants of structure TS2b-3, and (c) Structural diagram of the products of structure TS2b-3.

(b)

(c)

Туре	TDTS	G _{TDTS}	TDI	G _{TDI}	δΕ
	TS 20 2h	40.00	2a	-49.87	8.97
	15 2a-20	-40.90	3	-58.82	5.79
	TS 26 2	12.41	2a	-49.87	36.46
20 2001/2	18 20-5	-13.41	3	-58.82	33.28
gaseous	TS 2 4	24.41	3	-58.82	34.41
	15 5-4	-24.41	5	-42.91	6.37
	TS 5 20	37.40	3	-58.82	21.42
	15 <i>3-2</i> a	-37.40	2a	-49.87	12.47
	TS 22 2h	80.05	2a	-98.17	8.22
	15 2a-20	-07.75	3	-107.27	8.74
	TS 2h-3	-61 59	2a	-98.17	36.58
aqueous	15 20-5	-01.57	3	-107.27	37.10
aqueous	TS 3_4	-69.86	3	-107.27	28.83
	155-4	-07.00	5	-89.86	11.42
	TS 5-29	-82 22	3	-107.27	25.05
	10 <i>5-2</i> a	02.22	2a	-98.17	15.95

S5. All possible TDI, TDTS, and their Gibbs free energy values and δE in the catalytic process, in kcal/mol.

Temperature	Туре	1+OH-	2a+CO+	TS(2a+2b)	2b+CO	TS(2b-3)	3+H ₂ O+	TS (3-4)	4+CO+	5+CO+CO ₂	TS(5-2a)	2a+H ₂ +
		+CO+H ₂ O	H ₂ O	+CO+H ₂ O	+H ₂ O	+CO+H ₂ O	CO+CO ₂	+CO+CO ₂	CO ₂	$+H_2$	+H ₂ +CO ₂	CO ₂
2001/	gaseous	0.00	-53.03	-44.08	-52.80	-16.57	-57.98	-27.56	-41.68	-42.91	-40.57	-65.13
5001	aqueous	0.00	-14.60	-6.34	-13.22	22.03	-20.12	13.71	-2.44	-3.09	1.37	-23.16
400K	gaseous	-23.71	-72.59	-64.19	-72.96	-36.55	-80.26	-47.40	-61.66	-64.41	-60.20	-83.70
	aqueous	-22.21	-34.21	-26.45	-32.67	2.12	-42.57	-6.26	-22.70	-24.74	-18.11	-41.78
500K	gaseous	-49.34	-93.98	-86.16	-95.01	-58.40	-104.37	-69.07	-83.51	-87.78	-81.74	-104.14
	aqueous	-46.35	-55.66	-48.42	-53.96	-19.65	-66.86	-28.10	-44.81	-48.26	-39.49	-62.28
600K	gaseous	-76.58	-116.94	-109.70	-118.66	-81.84	-130.03	-92.32	-106.95	-112.75	-104.89	-126.18
	aqueous	-72.08	-78.67	-71.98	-76.81	-43.03	-92.70	-51.53	-68.54	-73.39	-62.50	-84.38

S6. The Gibbs free energy of the transition states and intermediates in the reaction pathway at temperatures ranging from 300K to 900K, in kcal/mol.

700K	gaseous	-105.20	-141.26	-134.62	-143.71	-106.67	-157.04	-116.96	-131.81	-139.11	-129.46	-149.62
	aqueous	-99.20	-103.05	-96.91	-101.03	-67.79	-119.91	-76.36	-93.68	-99.92	-86.93	-107.89
800K	gaseous	-135.03	-166.78	-160.75	-169.99	-132.73	-185.26	-142.83	-157.92	-166.71	-155.27	-174.31
	aqueous	-127.54	-128.65	-123.06	-126.46	-93.79	-148.32	-102.43	-120.07	-127.68	-112.60	-132.65
900K	gaseous	-165.97	-193.40	-187.98	-197.40	-159.91	-214.57	-169.83	-185.16	-195.42	-182.22	-200.12
	aqueous	-156.98	-155.34	-150.32	-152.98	-120.90	-177.82	-129.63	-147.60	-156.56	-139.41	-158.54